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Preface

“Go is an open source programming language that makes it easy to build simple, reliable,
and efficient software” (From the Go web site at golang.org)

Go was conceived in September 2007 by Robert Griesemer, Rob Pike, and Ken Thompson, all
at Google, and was announced in November 2009. The goals of the language and its accom-
panying tools were to be expressive, efficient in both compilation and execution, and effective
in writing reliable and robust programs.

Go bears a surface similarity to C and, like C, is a tool for professional programmers, achiev-
ing maximum effect with minimum means. But it is much more than an updated version of
C. It borrows and adapts good ideas from many other languages, while avoiding features that
have led to complexity and unreliable code. Its facilities for concurrency are new and efficient,
and its approach to data abstraction and object-oriented programming is unusually flexible. It
has automatic memory management or garbage collection.

Go is especially well suited for building infrastructure like networked servers, and tools and
systems for programmers, but it is truly a general-purpose language and finds use in domains
as diverse as graphics, mobile applications, and machine learning. It has become popular as a
replacement for untyped scripting languages because it balances expressiveness with safety:
Go programs typically run faster than programs written in dynamic languages and suffer far
fewer crashes due to unexpected type errors.

Go is an open-source project, so source code for its compiler, libraries, and tools is freely avail-
able to anyone. Contributions to the project come from an active worldwide community. Go
runs on Unix-like systems—Linux, FreeBSD, OpenBSD, Mac OS X—and on Plan 9 and
Microsoft Windows. Programs written in one of these environments generally work without
modification on the others.

Xi
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This book is meant to help you start using Go effectively right away and to use it well, taking
full advantage of Go’s language features and standard libraries to write clear, idiomatic, and
efficient programs.

The Origins of Go

Like biological species, successful languages beget offspring that incorporate the advantages of
their ancestors; interbreeding sometimes leads to surprising strengths; and, very occasionally,
a radical new feature arises without precedent. We can learn a lot about why a language is the
way it is and what environment it has been adapted for by looking at these influences.

The figure below shows the most important influences of earlier programming languages on
the design of Go.

ALGOL 60
(Backus et al., 1960)

|

Pascal
(Wirth, 1970)
C
(Ritchie, 1972)
CSpP
(Hoare, 1978) Modula-2
* (Wirth, 1980)
Squeak
(Cardelli & Pike, 1985) Oberon
* (Wirth & Gutknecht,
1986)
'\:;Y(\;Sqlgsg)k Object Oberon
+ (Mé&ssenbéck, Templ
& Griesemer, 1990)
Alef Oberon-2 /
. (Wirth & Méssenbéck,
(Winterbottom, 1992) 1991)

Go
(Griesemer, Pike & Thompson, 2009)

Go is sometimes described as a “C-like language,” or as “C for the 21st century” From C, Go
inherited its expression syntax, control-flow statements, basic data types, call-by-value param-
eter passing, pointers, and above all, C’s emphasis on programs that compile to efficient
machine code and cooperate naturally with the abstractions of current operating systems.
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But there are other ancestors in Go’s family tree. One major stream of influence comes from
languages by Niklaus Wirth, beginning with Pascal. Modula-2 inspired the package concept.
Oberon eliminated the distinction between module interface files and module implementation
files. Oberon-2 influenced the syntax for packages, imports, and declarations, and Object
Oberon provided the syntax for method declarations.

Another lineage among Gos ancestors, and one that makes Go distinctive among recent
programming languages, is a sequence of little-known research languages developed at Bell
Labs, all inspired by the concept of communicating sequential processes (CSP) from Tony
Hoare’s seminal 1978 paper on the foundations of concurrency. In CSP, a program is a parallel
composition of processes that have no shared state; the processes communicate and synchro-
nize using channels. But Hoare’s CSP was a formal language for describing the fundamental
concepts of concurrency, not a programming language for writing executable programs.

Rob Pike and others began to experiment with CSP implementations as actual languages. The
first was called Squeak (“A language for communicating with mice”), which provided a lan-
guage for handling mouse and keyboard events, with statically created channels. This was
followed by Newsqueak, which offered C-like statement and expression syntax and Pascal-like
type notation. It was a purely functional language with garbage collection, again aimed at
managing keyboard, mouse, and window events. Channels became first-class values, dynami-
cally created and storable in variables.

The Plan 9 operating system carried these ideas forward in a language called Alef. Alef tried
to make Newsqueak a viable system programming language, but its omission of garbage col-
lection made concurrency too painful.

Other constructions in Go show the influence of non-ancestral genes here and there; for
example iota is loosely from APL, and lexical scope with nested functions is from Scheme
(and most languages since). Here too we find novel mutations. Go’s innovative slices provide
dynamic arrays with efficient random access but also permit sophisticated sharing
arrangements reminiscent of linked lists. And the defer statement is new with Go.

The Go Project

All programming languages reflect the programming philosophy of their creators, which often
includes a significant component of reaction to the perceived shortcomings of earlier lan-
guages. The Go project was borne of frustration with several software systems at Google that
were suffering from an explosion of complexity. (This problem is by no means unique to
Google.)

As Rob Pike put it, “complexity is multiplicative”: fixing a problem by making one part of the
system more complex slowly but surely adds complexity to other parts. With constant pres-
sure to add features and options and configurations, and to ship code quickly, it's easy to
neglect simplicity, even though in the long run simplicity is the key to good software.
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Simplicity requires more work at the beginning of a project to reduce an idea to its essence and
more discipline over the lifetime of a project to distinguish good changes from bad or perni-
cious ones. With sufficient effort, a good change can be accommodated without compromis-
ing what Fred Brooks called the “conceptual integrity” of the design but a bad change cannot,
and a pernicious change trades simplicity for its shallow cousin, convenience. Only through
simplicity of design can a system remain stable, secure, and coherent as it grows.

The Go project includes the language itself, its tools and standard libraries, and last but not
least, a cultural agenda of radical simplicity. As a recent high-level language, Go has the bene-
fit of hindsight, and the basics are done well: it has garbage collection, a package system, first-
class functions, lexical scope, a system call interface, and immutable strings in which text is
generally encoded in UTF-8. But it has comparatively few features and is unlikely to add
more. For instance, it has no implicit numeric conversions, no constructors or destructors, no
operator overloading, no default parameter values, no inheritance, no generics, no exceptions,
no macros, no function annotations, and no thread-local storage. The language is mature and
stable, and guarantees backwards compatibility: older Go programs can be compiled and run
with newer versions of compilers and standard libraries.

Go has enough of a type system to avoid most of the careless mistakes that plague program-
mers in dynamic languages, but it has a simpler type system than comparable typed languages.
This approach can sometimes lead to isolated pockets of “untyped” programming within a
broader framework of types, and Go programmers do not go to the lengths that C++ or
Haskell programmers do to express safety properties as type-based proofs. But in practice Go
gives programmers much of the safety and run-time performance benefits of a relatively
strong type system without the burden of a complex one.

Go encourages an awareness of contemporary computer system design, particularly the
importance of locality. Its built-in data types and most library data structures are crafted to
work naturally without explicit initialization or implicit constructors, so relatively few mem-
ory allocations and memory writes are hidden in the code. Go's aggregate types (structs and
arrays) hold their elements directly, requiring less storage and fewer allocations and pointer
indirections than languages that use indirect fields. And since the modern computer is a par-
allel machine, Go has concurrency features based on CSP, as mentioned earlier. The variable-
size stacks of Go’s lightweight threads or goroutines are initially small enough that creating one
goroutine is cheap and creating a million is practical.

Go's standard library, often described as coming with “batteries included,” provides clean
building blocks and APIs for I/O, text processing, graphics, cryptography, networking, and
distributed applications, with support for many standard file formats and protocols. The
libraries and tools make extensive use of convention to reduce the need for configuration and
explanation, thus simplifying program logic and making diverse Go programs more similar to
each other and thus easier to learn. Projects built using the go tool use only file and identifier
names and an occasional special comment to determine all the libraries, executables, tests,
benchmarks, examples, platform-specific variants, and documentation for a project; the Go
source itself contains the build specification.
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Organization of the Book

We assume that you have programmed in one or more other languages, whether compiled like
C, C++, and Java, or interpreted like Python, Ruby, and JavaScript, so we won’t spell out every-
thing as if for a total beginner. Surface syntax will be familiar, as will variables and constants,
expressions, control flow, and functions.

Chapter 1 is a tutorial on the basic constructs of Go, introduced through a dozen programs for
everyday tasks like reading and writing files, formatting text, creating images, and communi-
cating with Internet clients and servers.

Chapter 2 describes the structural elements of a Go program—declarations, variables, new
types, packages and files, and scope. Chapter 3 discusses numbers, booleans, strings, and con-
stants, and explains how to process Unicode. Chapter 4 describes composite types, that is,
types built up from simpler ones using arrays, maps, structs, and slices, Go’s approach to
dynamic lists. Chapter 5 covers functions and discusses error handling, panic and recover,
and the defer statement.

Chapters 1 through 5 are thus the basics, things that are part of any mainstream imperative
language. Go’s syntax and style sometimes differ from other languages, but most program-
mers will pick them up quickly. The remaining chapters focus on topics where Go’s approach
is less conventional: methods, interfaces, concurrency, packages, testing, and reflection.

Go has an unusual approach to object-oriented programming. There are no class hierarchies,
or indeed any classes; complex object behaviors are created from simpler ones by composition,
not inheritance. Methods may be associated with any user-defined type, not just structures,
and the relationship between concrete types and abstract types (interfaces) is implicit, so a
concrete type may satisfy an interface that the type’s designer was unaware of. Methods are
covered in Chapter 6 and interfaces in Chapter 7.

Chapter 8 presents Go's approach to concurrency, which is based on the idea of communicat-
ing sequential processes (CSP), embodied by goroutines and channels. Chapter 9 explains the
more traditional aspects of concurrency based on shared variables.

Chapter 10 describes packages, the mechanism for organizing libraries. This chapter also
shows how to make effective use of the go tool, which provides for compilation, testing,
benchmarking, program formatting, documentation, and many other tasks, all within a single
command.

Chapter 11 deals with testing, where Go takes a notably lightweight approach, avoiding
abstraction-laden frameworks in favor of simple libraries and tools. The testing libraries
provide a foundation atop which more complex abstractions can be built if necessary.

Chapter 12 discusses reflection, the ability of a program to examine its own representation
during execution. Reflection is a powerful tool, though one to be used carefully; this chapter
explains finding the right balance by showing how it is used to implement some important Go
libraries. Chapter 13 explains the gory details of low-level programming that uses the unsafe
package to step around Go’s type system, and when that is appropriate.
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Each chapter has a number of exercises that you can use to test your understanding of Go, and
to explore extensions and alternatives to the examples from the book.

All but the most trivial code examples in the book are available for download from the public
Git repository at gopl.io. Each example is identified by its package import path and may be
conveniently fetched, built, and installed using the go get command. You'll need to choose a
directory to be your Go workspace and set the GOPATH environment variable to point to it.
The go tool will create the directory if necessary. For example:

$ export GOPATH=$HOME/gobook # choose workspace directory
$ go get gopl.io/chl/helloworld # fetch, build, install

$ $GOPATH/bin/helloworld # run

Hello, it

To run the examples, you will need at least version 1.5 of Go.

$ go version
go version gol.5 linux/amdé64

Follow the instructions at https://golang.org/doc/install if the go tool on your com-
puter is older or missing.

Where to Find More Information

The best source for more information about Go is the official web site, https://golang.org,
which provides access to the documentation, including the Go Programming Language Specifi-
cation, standard packages, and the like. There are also tutorials on how to write Go and how
to write it well, and a wide variety of online text and video resources that will be valuable com-
plements to this book. The Go Blog at blog.golang.org publishes some of the best writing
on Go, with articles on the state of the language, plans for the future, reports on conferences,
and in-depth explanations of a wide variety of Go-related topics.

One of the most useful aspects of online access to Go (and a regrettable limitation of a paper
book) is the ability to run Go programs from the web pages that describe them. This func-
tionality is provided by the Go Playground at play.golang.org, and may be embedded
within other pages, such as the home page at golang.org or the documentation pages served
by the godoc tool.

The Playground makes it convenient to perform simple experiments to check one’s under-
standing of syntax, semantics, or library packages with short programs, and in many ways
takes the place of a read-eval-print loop (REPL) in other languages. Its persistent URLs are
great for sharing snippets of Go code with others, for reporting bugs or making suggestions.

Built atop the Playground, the Go Tour at tour.golang.org is a sequence of short interactive
lessons on the basic ideas and constructions of Go, an orderly walk through the language.

The primary shortcoming of the Playground and the Tour is that they allow only standard
libraries to be imported, and many library features—networking, for example—are restricted


https://golang.org/doc/install
https://golang.org

WHERE TO FIND MORE INFORMATION Xvii

for practical or security reasons. They also require access to the Internet to compile and run
each program. So for more elaborate experiments, you will have to run Go programs on your
own computer. Fortunately the download process is straightforward, so it should not take
more than a few minutes to fetch the Go distribution from golang.org and start writing and
running Go programs of your own.

Since Go is an open-source project, you can read the code for any type or function in the stan-
dard library online at https://golang.org/pkg; the same code is part of the downloaded
distribution. Use this to figure out how something works, or to answer questions about
details, or merely to see how experts write really good Go.
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1

Tutorial

This chapter is a tour of the basic components of Go. We hope to provide enough information
and examples to get you off the ground and doing useful things as quickly as possible. The
examples here, and indeed in the whole book, are aimed at tasks that you might have to do in
the real world. In this chapter we'll try to give you a taste of the diversity of programs that one
might write in Go, ranging from simple file processing and a bit of graphics to concurrent
Internet clients and servers. We certainly won’t explain everything in the first chapter, but
studying such programs in a new language can be an effective way to get started.

When you're learning a new language, there’s a natural tendency to write code as you would
have written it in a language you already know. Be aware of this bias as you learn Go and try
to avoid it. We've tried to illustrate and explain how to write good Go, so use the code here as
a guide when you're writing your own.

1.1. Hello, World

We'll start with the now-traditional “hello, world” example, which appears at the beginning of
The C Programming Language, published in 1978. C is one of the most direct influences on
Go, and “hello, world” illustrates a number of central ideas.

gopl.io/chl/helloworld

package main
import "fmt"

func main() {
fmt.Println("Hello, #®R")
}
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Go is a compiled language. The Go toolchain converts a source program and the things it
depends on into instructions in the native machine language of a computer. These tools are
accessed through a single command called go that has a number of subcommands. The sim-
plest of these subcommands is run, which compiles the source code from one or more source
files whose names end in .go, links it with libraries, then runs the resulting executable file.
(We will use $ as the command prompt throughout the book.)

$ go run helloworld.go
Not surprisingly, this prints
Hello, tt®
Go natively handles Unicode, so it can process text in all the world’s languages.

If the program is more than a one-shot experiment, it’s likely that you would want to compile
it once and save the compiled result for later use. That is done with go build:

$ go build helloworld.go

This creates an executable binary file called helloworld that can be run any time without fur-
ther processing:

$ ./helloworld
Hello, it5#

We have labeled each significant example as a reminder that you can obtain the code from the
book’s source code repository at gopl.io:

gopl.io/chi/helloworld

If you run go get gopl.io/chl/helloworld, it will fetch the source code and place it in the
corresponding directory. There’s more about this topic in Section 2.6 and Section 10.7.

Let’s now talk about the program itself. Go code is organized into packages, which are similar
to libraries or modules in other languages. A package consists of one or more . go source files
in a single directory that define what the package does. Each source file begins with a package
declaration, here package main, that states which package the file belongs to, followed by a list
of other packages that it imports, and then the declarations of the program that are stored in
that file.

The Go standard library has over 100 packages for common tasks like input and output,
sorting, and text manipulation. For instance, the fmt package contains functions for printing
formatted output and scanning input. Println is one of the basic output functions in fmt; it
prints one or more values, separated by spaces, with a newline character at the end so that the
values appear as a single line of output.

Package main is special. It defines a standalone executable program, not a library. Within
package main the function main is also special—it's where execution of the program begins.
Whatever main does is what the program does. Of course, main will normally call upon func-
tions in other packages to do much of the work, such as the function fmt.Println.
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We must tell the compiler what packages are needed by this source file; that’s the role of the
import declaration that follows the package declaration. The “hello, world” program uses
only one function from one other package, but most programs will import more packages.

You must import exactly the packages you need. A program will not compile if there are
missing imports or if there are unnecessary ones. This strict requirement prevents references
to unused packages from accumulating as programs evolve.

The import declarations must follow the package declaration. After that, a program consists
of the declarations of functions, variables, constants, and types (introduced by the keywords
func, var, const, and type); for the most part, the order of declarations does not matter. This
program is about as short as possible since it declares only one function, which in turn calls
only one other function. To save space, we will sometimes not show the package and import
declarations when presenting examples, but they are in the source file and must be there to
compile the code.

A function declaration consists of the keyword func, the name of the function, a parameter
list (empty for main), a result list (also empty here), and the body of the function—the state-
ments that define what it does—enclosed in braces. We'll take a closer look at functions in
Chapter 5.

Go does not require semicolons at the ends of statements or declarations, except where two or
more appear on the same line. In effect, newlines following certain tokens are converted into
semicolons, so where newlines are placed matters to proper parsing of Go code. For instance,
the opening brace { of the function must be on the same line as the end of the func declara-
tion, not on a line by itself, and in the expression x + y, a newline is permitted after but not
before the + operator.

Go takes a strong stance on code formatting. The gofmt tool rewrites code into the standard
format, and the go tool’s fmt subcommand applies gofmt to all the files in the specified pack-
age, or the ones in the current directory by default. All Go source files in the book have been
run through gofmt, and you should get into the habit of doing the same for your own code.
Declaring a standard format by fiat eliminates a lot of pointless debate about trivia and, more
importantly, enables a variety of automated source code transformations that would be
infeasible if arbitrary formatting were allowed.

Many text editors can be configured to run gofmt each time you save a file, so that your source
code is always properly formatted. A related tool, goimports, additionally manages the inser-
tion and removal of import declarations as needed. It is not part of the standard distribution
but you can obtain it with this command:

$ go get golang.org/x/tools/cmd/goimports

For most users, the usual way to download and build packages, run their tests, show their doc-
umentation, and so on, is with the go tool, which we’ll look at in Section 10.7.
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1.2. Command-Line Arguments

Most programs process some input to produce some output; that’s pretty much the definition
of computing. But how does a program get input data on which to operate? Some programs
generate their own data, but more often, input comes from an external source: a file, a network
connection, the output of another program, a user at a keyboard, command-line arguments,
or the like. The next few examples will discuss some of these alternatives, starting with com-
mand-line arguments.

The os package provides functions and other values for dealing with the operating system in a
platform-independent fashion. Command-line arguments are available to a program in a
variable named Args that is part of the os package; thus its name anywhere outside the os
package is os . Args.

The variable os . Args is a slice of strings. Slices are a fundamental notion in Go, and we'll talk
a lot more about them soon. For now, think of a slice as a dynamically sized sequence s of
array elements where individual elements can be accessed as s[i] and a contiguous subse-
quence as s[m:n]. The number of elements is given by len(s). As in most other program-
ming languages, all indexing in Go uses half-open intervals that include the first index but
exclude the last, because it simplifies logic. For example, the slice s[m:n], where 0 <m<n <
len(s), contains n-m elements.

The first element of os.Args, os.Args[@], is the name of the command itself; the other ele-
ments are the arguments that were presented to the program when it started execution. A
slice expression of the form s[m:n] yields a slice that refers to elements m through n-1, so the
elements we need for our next example are those in the slice os.Args[1:1en(os.Args)]. Ifm
or n is omitted, it defaults to 0 or 1en(s) respectively, so we can abbreviate the desired slice as
os.Args[1:].

Here’s an implementation of the Unix echo command, which prints its command-line argu-
ments on a single line. It imports two packages, which are given as a parenthesized list rather
than as individual import declarations. Either form is legal, but conventionally the list form is
used. The order of imports doesn't matter; the gofmt tool sorts the package names into
alphabetical order. (When there are several versions of an example, we will often number
them so you can be sure of which one we're talking about.)

gopl.io/chl/echol

// Echol prints its command-line arguments.
package main

import (
"emt”
"os
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func main() {
var s, sep string

for i :=1; i < len(os.Args); i++ {
S += sep + o0s.Args[i]
sep = " "

}

fmt.Println(s)
}

Comments begin with //. All text from a // to the end of the line is commentary for
programmers and is ignored by the compiler. By convention, we describe each package in a
comment immediately preceding its package declaration; for a main package, this comment is
one or more complete sentences that describe the program as a whole.

The var declaration declares two variables s and sep, of type string. A variable can be ini-
tialized as part of its declaration. If it is not explicitly initialized, it is implicitly initialized to
the zero value for its type, which is @ for numeric types and the empty string "" for strings.
Thus in this example, the declaration implicitly initializes s and sep to empty strings. We'll
have more to say about variables and declarations in Chapter 2.

For numbers, Go provides the usual arithmetic and logical operators. When applied to
strings, however, the + operator concatenates the values, so the expression

sep + os.Args[i]

represents the concatenation of the strings sep and os.Args[i]. The statement we used in
the program,

S += sep + os.Args[i]

is an assignment statement that concatenates the old value of s with sep and os.Args[i] and
assigns it back to s; it is equivalent to

S = s + sep + 0s.Args[i]

The operator += is an assignment operator. Each arithmetic and logical operator like + or * has
a corresponding assignment operator.

The echo program could have printed its output in a loop one piece at a time, but this version
instead builds up a string by repeatedly appending new text to the end. The string s starts life
empty, that is, with value "", and each trip through the loop adds some text to it; after the first
iteration, a space is also inserted so that when the loop is finished, there is one space between
each argument. This is a quadratic process that could be costly if the number of arguments is
large, but for echo, that’s unlikely. We'll show a number of improved versions of echo in this
chapter and the next that will deal with any real inefficiency.

The loop index variable i is declared in the first part of the for loop. The := symbol is part of
a short variable declaration, a statement that declares one or more variables and gives them
appropriate types based on the initializer values; there’s more about this in the next chapter.

The increment statement i++ adds 1 to i; it's equivalent to i += 1 which is in turn equivalent
to i =1+ 1. There’s a corresponding decrement statement i-- that subtracts 1. These are
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statements, not expressions as they are in most languages in the C family, so j = i++ is illegal,
and they are postfix only, so - -1 is not legal either.

The for loop is the only loop statement in Go. It has a number of forms, one of which is
illustrated here:

for initialization; condition; post {
// zero or more statements

}

Parentheses are never used around the three components of a for loop. The braces are
mandatory, however, and the opening brace must be on the same line as the post statement.

The optional initialization statement is executed before the loop starts. If it is present, it
must be a simple statement, that is, a short variable declaration, an increment or assignment
statement, or a function call. The condition is a boolean expression that is evaluated at the
beginning of each iteration of the loop; if it evaluates to true, the statements controlled by the
loop are executed. The post statement is executed after the body of the loop, then the condi-
tion is evaluated again. The loop ends when the condition becomes false.

Any of these parts may be omitted. If there is no initialization and no post, the semi-
colons may also be omitted:

// a traditional "while" loop
for condition {

/...
}

If the condition is omitted entirely in any of these forms, for example in

// a traditional infinite loop
for {

/...
}

the loop is infinite, though loops of this form may be terminated in some other way, like a
break or return statement.

Another form of the for loop iterates over a range of values from a data type like a string or a
slice. To illustrate, here’s a second version of echo:

gopl.io/chl/echo2

// Echo2 prints its command-line arguments.
package main

import (
Emt”
"os
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func main() {
s, sep := "", ""
for _, arg := range os.Args[1:] {
S += sep + arg
sep = " "

}
fmt.Println(s)

}

In each iteration of the loop, range produces a pair of values: the index and the value of the
element at that index. In this example, we don’t need the index, but the syntax of a range loop
requires that if we deal with the element, we must deal with the index too. One idea would be
to assign the index to an obviously temporary variable like temp and ignore its value, but Go
does not permit unused local variables, so this would result in a compilation error.

The solution is to use the blank identifier, whose name is _ (that is, an underscore). The blank
identifier may be used whenever syntax requires a variable name but program logic does not,
for instance to discard an unwanted loop index when we require only the element value. Most
Go programmers would likely use range and _ to write the echo program as above, since the
indexing over os.Args is implicit, not explicit, and thus easier to get right.

This version of the program uses a short variable declaration to declare and initialize s and
sep, but we could equally well have declared the variables separately. There are several ways
to declare a string variable; these are all equivalent:

s :=
var s string

var s =
var s string =

Why should you prefer one form to another? The first form, a short variable declaration, is
the most compact, but it may be used only within a function, not for package-level variables.
The second form relies on default initialization to the zero value for strings, which is "". The
third form is rarely used except when declaring multiple variables. The fourth form is explicit
about the variable’s type, which is redundant when it is the same as that of the initial value but
necessary in other cases where they are not of the same type. In practice, you should generally
use one of the first two forms, with explicit initialization to say that the initial value is
important and implicit initialization to say that the initial value doesn’t matter.

As noted above, each time around the loop, the string s gets completely new contents. The +=
statement makes a new string by concatenating the old string, a space character, and the next
argument, then assigns the new string to s. The old contents of s are no longer in use, so they
will be garbage-collected in due course.

If the amount of data involved is large, this could be costly. A simpler and more efficient
solution would be to use the Join function from the strings package:
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gopl.io/chl/echo3

func main() {
fmt.Println(strings.Join(os.Args[1:], " "))
}

Finally, if we don’t care about format but just want to see the values, perhaps for debugging, we
can let Println format the results for us:

fmt.Println(os.Args[1:])

The output of this statement is like what we would get from strings.Join, but with sur-
rounding brackets. Any slice may be printed this way.

Exercise 1.1: Modify the echo program to also print os.Args[@], the name of the command
that invoked it.

Exercise 1.2: Modify the echo program to print the index and value of each of its arguments,
one per line.

Exercise 1.3: Experiment to measure the difference in running time between our potentially
inefficient versions and the one that uses strings.Join. (Section 1.6 illustrates part of the
time package, and Section 11.4 shows how to write benchmark tests for systematic per-
formance evaluation.)

1.3. Finding Duplicate Lines

Programs for file copying, printing, searching, sorting, counting, and the like all have a similar
structure: a loop over the input, some computation on each element, and generation of output
on the fly or at the end. We'll show three variants of a program called dups; it is partly inspired
by the Unix uniq command, which looks for adjacent duplicate lines. The structures and
packages used are models that can be easily adapted.

The first version of dup prints each line that appears more than once in the standard input,
preceded by its count. This program introduces the if statement, the map data type, and the
bufio package.

gopl.io/chl/dupl

// Dupl prints the text of each line that appears more than
// once in the standard input, preceded by its count.
package main

import (
"bufio"
"fmt"
"os
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func main() {
counts := make(map[string]int)
input := bufio.NewScanner(os.Stdin)
for input.Scan() {
counts[input.Text()]++

}
// NOTE: ignoring potential errors from input.Err()
for line, n := range counts {
ifn>1{
fmt.Printf("%d\t%s\n", n, line)
}
}

}

As with for, parentheses are never used around the condition in an if statement, but braces
are required for the body. There can be an optional else part that is executed if the condition
is false.

A map holds a set of key/value pairs and provides constant-time operations to store, retrieve,
or test for an item in the set. The key may be of any type whose values can compared with ==,
strings being the most common example; the value may be of any type at all. In this example,
the keys are strings and the values are ints. The built-in function make creates a new empty
map; it has other uses too. Maps are discussed at length in Section 4.3.

Each time dup reads a line of input, the line is used as a key into the map and the cor-
responding value is incremented. The statement counts[input.Text()]++ is equivalent to
these two statements:

line := input.Text()
counts[line] = counts[line] + 1

It’s not a problem if the map doesn't yet contain that key. The first time a new line is seen, the
expression counts[line] on the right-hand side evaluates to the zero value for its type, which
is @ for int.

To print the results, we use another range-based for loop, this time over the counts map. As
before, each iteration produces two results, a key and the value of the map element for that
key. The order of map iteration is not specified, but in practice it is random, varying from one
run to another. This design is intentional, since it prevents programs from relying on any par-
ticular ordering where none is guaranteed.

Onward to the bufio package, which helps make input and output efficient and convenient.
One of its most useful features is a type called Scanner that reads input and breaks it into lines
or words; it’s often the easiest way to process input that comes naturally in lines.

The program uses a short variable declaration to create a new variable input that refers to a
bufio.Scanner:

input := bufio.NewScanner(os.Stdin)
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The scanner reads from the program’s standard input. Each call to input.Scan() reads the
next line and removes the newline character from the end; the result can be retrieved by call-
ing input.Text(). The Scan function returns true if there is a line and false when there is
no more input.

The function fmt.Printf, like printf in C and other languages, produces formatted output
from a list of expressions. Its first argument is a format string that specifies how subsequent
arguments should be formatted. The format of each argument is determined by a conversion
character, a letter following a percent sign. For example, %d formats an integer operand using
decimal notation, and %s expands to the value of a string operand.

Printf has over a dozen such conversions, which Go programmers call verbs. This table is far
from a complete specification but illustrates many of the features that are available:

%d decimal integer

%x, %0, %b  integer in hexadecimal, octal, binary
%f, %g, % floating-point number: 3.141593 3.141592653589793 3.141593e+00

%t boolean: true or false

%c rune (Unicode code point)

%s string

%q quoted string "abc" or rune 'c*
%V any value in a natural format

%T type of any value

%% literal percent sign (no operand)

The format string in dup1 also contains a tab \t and a newline \n. String literals may contain
such escape sequences for representing otherwise invisible characters. Printf does not write a
newline by default. By convention, formatting functions whose names end in f, such as
log.Printf and fmt.Errorf, use the formatting rules of fmt.Printf, whereas those whose
names end in 1n follow Println, formatting their arguments as if by %v, followed by a
newline.

Many programs read either from their standard input, as above, or from a sequence of named
files. The next version of dup can read from the standard input or handle a list of file names,
using os.Open to open each one:

gopl.io/chl/dup2

// Dup2 prints the count and text of lines that appear more than once
// in the input. It reads from stdin or from a list of named files.
package main

import (
"bufio"
"fmt"
"os



SECTION 1.3. FINDING DUPLICATE LINES 11

func main() {
counts := make(map[string]int)
files := os.Args[1l:]
if len(files) == 0 {
countLines(os.Stdin, counts)
} else {
for _, arg :

range files {

f, err := o0s.Open(arg)
if err != nil {
fmt.Fprintf(os.Stderr, "dup2: %v\n", err)
continue
}
countLines(f, counts)
f.Close()
}
}
for line, n := range counts {
ifn>1{
fmt.Printf("%d\t%s\n", n, line)
}
}
}
func countLines(f *os.File, counts map[string]int) {
input := bufio.NewScanner(f)
for input.Scan() {
counts[input.Text()]++
}
// NOTE: ignoring potential errors from input.Err()
}

The function os.0pen returns two values. The first is an open file (*os.File) that is used in
subsequent reads by the Scanner.

The second result of os.0Open is a value of the built-in error type. If err equals the special
built-in value nil, the file was opened successfully. The file is read, and when the end of the
input is reached, Close closes the file and releases any resources. On the other hand, if err is
not nil, something went wrong. In that case, the error value describes the problem. Our sim-
ple-minded error handling prints a message on the standard error stream using Fprintf and
the verb %v, which displays a value of any type in a default format, and dup then carries on
with the next file; the continue statement goes to the next iteration of the enclosing for loop.

In the interests of keeping code samples to a reasonable size, our early examples are intention-
ally somewhat cavalier about error handling. Clearly we must check for an error from
o0s.0pen; however, we are ignoring the less likely possibility that an error could occur while
reading the file with input.Scan. We will note places where we've skipped error checking,
and we will go into the details of error handling in Section 5.4.

Notice that the call to countLines precedes its declaration. Functions and other package-level
entities may be declared in any order.
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A map is a reference to the data structure created by make. When a map is passed to a func-
tion, the function receives a copy of the reference, so any changes the called function makes to
the underlying data structure will be visible through the caller’s map reference too. In our
example, the values inserted into the counts map by countLines are seen by main.

The versions of dup above operate in a “streaming” mode in which input is read and broken
into lines as needed, so in principle these programs can handle an arbitrary amount of input.
An alternative approach is to read the entire input into memory in one big gulp, split it into
lines all at once, then process the lines. The following version, dup3, operates in that fashion.
It introduces the function ReadFile (from the io/ioutil package), which reads the entire
contents of a named file, and strings.Split, which splits a string into a slice of substrings.
(Split is the opposite of strings.Join, which we saw earlier.)

We've simplified dup3 somewhat. First, it only reads named files, not the standard input, since
ReadFile requires a file name argument. Second, we moved the counting of the lines back
into main, since it is now needed in only one place.

gopl.io/chl/dup3
package main

import (
"fmt"
"io/ioutil"
"og"
"strings"

)

func main() {
counts := make(map[string]int)
for _, filename := range os.Args[1:] {
data, err := ioutil.ReadFile(filename)
if err != nil {
fmt.Fprintf(os.Stderr, "dup3: %v\n", err)
continue
}
for _, line := range strings.Split(string(data), "\n") {
counts[line]++
}
}
for line, n := range counts {
ifn>1{
fmt.Printf("%d\t%s\n", n, line)
}

}

ReadFile returns a byte slice that must be converted into a string so it can be split by
strings.Split. We will discuss strings and byte slices at length in Section 3.5.4.
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Under the covers, bufio.Scanner, ioutil.ReadFile, and ioutil.WriteFile use the Read
and Write methods of *os.File, but it’s rare that most programmers need to access those
lower-level routines directly. The higher-level functions like those from bufio and io/ioutil
are easier to use.

Exercise 1.4: Modify dup2 to print the names of all files in which each duplicated line occurs.

1.4. Animated GIFs

The next program demonstrates basic usage of Go’s standard image packages, which we'll use
to create a sequence of bit-mapped images and then encode the sequence as a GIF animation.
The images, called Lissajous figures, were a staple visual effect in sci-fi films of the 1960s. They
are the parametric curves produced by harmonic oscillation in two dimensions, such as two
sine waves fed into the x and y inputs of an oscilloscope. Figure 1.1 shows some examples.

A\ WA
W

Figure 1.1. Four Lissajous figures.

There are several new constructs in this code, including const declarations, struct types, and
composite literals. Unlike most of our examples, this one also involves floating-point com-
putations. We'll discuss these topics only briefly here, pushing most details off to later chap-
ters, since the primary goal right now is to give you an idea of what Go looks like and the
kinds of things that can be done easily with the language and its libraries.

gopl.io/chl/lissajous

// Lissajous generates GIF animations of random Lissajous figures.
package main

import (
"image"
"image/color"
"image/gif"
"ig"
"math"
"math/rand"

os"
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var palette = []color.Color{color.White, color.Black}

const (
whiteIndex = @ // first color in palette
blackIndex = 1 // next color in palette

)

func main() {
lissajous(os.Stdout)

}
func lissajous(out io.Writer) {
const (
cycles =5 // number of complete x oscillator revolutions
res = 0.001 // angular resolution
size = 100 // image canvas covers [-size..+size]
nframes = 64 // number of animation frames
delay =38 // delay between frames in 1@ms units
)
freq := rand.Float64() * 3.0 // relative frequency of y oscillator
anim := gif.GIF{LoopCount: nframes}
phase := 0.0 // phase difference
for i := 0; i < nframes; i++ {
rect := image.Rect(@, 0, 2*size+l, 2*size+1)
img := image.NewPaletted(rect, palette)
for t := 0.0; t < cycles*2*math.Pi; t += res {
X := math.Sin(t)
y := math.Sin(t*freq + phase)
img.SetColorIndex(size+int(x*size+0.5), size+int(y*size+0.5),
blackIndex)
}
phase += 0.1
anim.Delay = append(anim.Delay, delay)
anim.Image = append(anim.Image, img)
}
gif.EncodeAll(out, &anim) // NOTE: ignoring encoding errors
}

After importing a package whose path has multiple components, like image/color, we refer
to the package with a name that comes from the last component. Thus the variable
color.White belongs to the image/color package and gif.GIF belongs to image/gif.

A const declaration (§3.6) gives names to constants, that is, values that are fixed at compile
time, such as the numerical parameters for cycles, frames, and delay. Like var declarations,
const declarations may appear at package level (so the names are visible throughout the pack-
age) or within a function (so the names are visible only within that function). The value of a
constant must be a number, string, or boolean.

The expressions [ ]Jcolor.Color{...} and gif.GIF{...} are composite literals (§4.2, $4.4.1),
a compact notation for instantiating any of Go’s composite types from a sequence of element
values. Here, the first one is a slice and the second one is a struct.
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The type gif.GIF isa struct type (§4.4). A struct is a group of values called fields, often of dif-
ferent types, that are collected together in a single object that can be treated as a unit. The
variable anim is a struct of type gif.GIF. The struct literal creates a struct value whose Loop-
Count field is set to nframes; all other fields have the zero value for their type. The individual
fields of a struct can be accessed using dot notation, as in the final two assignments which
explicitly update the Delay and Image fields of anim.

The lissajous function has two nested loops. The outer loop runs for 64 iterations, each
producing a single frame of the animation. It creates a new 201x201 image with a palette of
two colors, white and black. All pixels are initially set to the palette’s zero value (the zeroth
color in the palette), which we set to white. Each pass through the inner loop generates a new
image by setting some pixels to black. The result is appended, using the built-in append func-
tion (§4.2.1), to a list of frames in anim, along with a specified delay of 80ms. Finally the
sequence of frames and delays is encoded into GIF format and written to the output stream
out. The type of out is io.Writer, which lets us write to a wide range of possible destina-
tions, as we'll show soon.

The inner loop runs the two oscillators. The x oscillator is just the sine function. The y oscil-
lator is also a sinusoid, but its frequency relative to the x oscillator is a random number
between 0 and 3, and its phase relative to the x oscillator is initially zero but increases with
each frame of the animation. The loop runs until the x oscillator has completed five full
cycles. At each step, it calls SetColorIndex to color the pixel corresponding to (x, y) black,
which is at position 1 in the palette.

The main function calls the 1issajous function, directing it to write to the standard output,
so this command produces an animated GIF with frames like those in Figure 1.1:

$ go build gopl.io/chl/lissajous
$ ./lissajous >out.gif

Exercise 1.5: Change the Lissajous program’s color palette to green on black, for added
authenticity. To create the web color #RRGGBB, use color.RGBA{@XRR, ©XGG, OxBB, Oxff},
where each pair of hexadecimal digits represents the intensity of the red, green, or blue com-
ponent of the pixel.

Exercise 1.6: Modify the Lissajous program to produce images in multiple colors by adding
more values to palette and then displaying them by changing the third argument of Set-
ColorIndex in some interesting way.

1.5. Fetching a URL

For many applications, access to information from the Internet is as important as access to the
local file system. Go provides a collection of packages, grouped under net, that make it easy
to send and receive information through the Internet, make low-level network connections,
and set up servers, for which Go’s concurrency features (introduced in Chapter 8) are particu-
larly useful.
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To illustrate the minimum necessary to retrieve information over HTTP, here’s a simple
program called fetch that fetches the content of each specified URL and prints it as uninter-
preted text; it’s inspired by the invaluable utility curl. Obviously one would usually do more
with such data, but this shows the basic idea. We will use this program frequently in the book.

gopl.io/chl/fetch

// Fetch prints the content found at a URL.
package main

import (
"fmt"
"io/ioutil"
"net/http"
"og"

)

func main() {
for _, url := range os.Args[1:] {
resp, err := http.Get(url)

if err != nil {
fmt.Fprintf(os.Stderr, "fetch: %v\n", err)
os.Exit(1)

}

b, err := ioutil.ReadAll(resp.Body)
resp.Body.Close()

if err != nil {
fmt.Fprintf(os.Stderr, "fetch: reading %s: %v\n", url, err)
os.Exit(1)

}

fmt.Printf("%s", b)

}

This program introduces functions from two packages, net/http and io/ioutil. The
http.Get function makes an HTTP request and, if there is no error, returns the result in the
response struct resp. The Body field of resp contains the server response as a readable
stream. Next, ioutil.ReadAll reads the entire response; the result is stored in b. The Body
stream is closed to avoid leaking resources, and Printf writes the response to the standard
output.

$ go build gopl.io/chl/fetch

$ ./fetch http://gopl.io

<html>

<head>

<title>The Go Programming Language</title>

If the HTTP request fails, fetch reports the failure instead:
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$ ./fetch http://bad.gopl.io
fetch: Get http://bad.gopl.io: dial tcp: lookup bad.gopl.io: no such host

In either error case, os.Exit (1) causes the process to exit with a status code of 1.

Exercise 1.7: The function call io.Copy(dst, src) reads from src and writes to dst. Use it
instead of ioutil.ReadAll to copy the response body to os.Stdout without requiring a
buffer large enough to hold the entire stream. Be sure to check the error result of io.Copy.

Exercise 1.8: Modify fetch to add the prefix http:// to each argument URL if it is missing.
You might want to use strings.HasPrefix.

Exercise 1.9: Modify fetch to also print the HTTP status code, found in resp.Status.

1.6. Fetching URLs Concurrently

One of the most interesting and novel aspects of Go is its support for concurrent program-
ming. This is a large topic, to which Chapter 8 and Chapter 9 are devoted, so for now we'll
give you just a taste of Go's main concurrency mechanisms, goroutines and channels.

The next program, fetchall, does the same fetch of a URLs contents as the previous example,
but it fetches many URLs, all concurrently, so that the process will take no longer than the
longest fetch rather than the sum of all the fetch times. This version of fetchall discards the
responses but reports the size and elapsed time for each one:

gopl.io/chl/fetchall

// Fetchall fetches URLs in parallel and reports their times and sizes.
package main

import (
"fmt"
"io"
"io/ioutil"
"net/http"
"os

"time"

)

func main() {
start := time.Now()
ch := make(chan string)
for _, url := range os.Args[1l:] {
go fetch(url, ch) // start a goroutine
}
for range os.Args[1:] {
fmt.Println(<-ch) // receive from channel ch

}
fmt.Printf("%.2fs elapsed\n", time.Since(start).Seconds())
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func fetch(url string, ch chan<- string) {

start := time.Now()

resp, err := http.Get(url)

if err != nil {
ch <- fmt.Sprint(err) // send to channel ch
return

}

nbytes, err := io.Copy(ioutil.Discard, resp.Body)

resp.Body.Close() // don't leak resources

if err != nil {
ch <- fmt.Sprintf("while reading %s: %v", url, err)
return

}

secs := time.Since(start).Seconds()

ch <- fmt.Sprintf("%.2fs %7d %s", secs, nbytes, url)
}

Here’s an example:

$ go build gopl.io/chl/fetchall
$ ./fetchall https://golang.org http://gopl.io https://godoc.org

0.14s 6852 https://godoc.org
0.16s 7261 https://golang.org
0.48s 2475 http://gopl.io

0.48s elapsed

A goroutine is a concurrent function execution. A channel is a communication mechanism
that allows one goroutine to pass values of a specified type to another goroutine. The function
main runs in a goroutine and the go statement creates additional goroutines.

The main function creates a channel of strings using make. For each command-line argument,
the go statement in the first range loop starts a new goroutine that calls fetch asynchronously
to fetch the URL using http.Get. The io.Copy function reads the body of the response and
discards it by writing to the ioutil.Discard output stream. Copy returns the byte count,
along with any error that occurred. As each result arrives, fetch sends a summary line on the
channel ch. The second range loop in main receives and prints those lines.

When one goroutine attempts a send or receive on a channel, it blocks until another goroutine
attempts the corresponding receive or send operation, at which point the value is transferred
and both goroutines proceed. In this example, each fetch sends a value (ch <- expression) on
the channel ch, and main receives all of them (<-ch). Having main do all the printing ensures
that output from each goroutine is processed as a unit, with no danger of interleaving if two
goroutines finish at the same time.

Exercise 1.10: Find a web site that produces a large amount of data. Investigate caching by
running fetchall twice in succession to see whether the reported time changes much. Do
you get the same content each time? Modify fetchall to print its output to a file so it can be
examined.
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Exercise 1.11: Try fetchall with longer argument lists, such as samples from the top million
web sites available at alexa.com. How does the program behave if a web site just doesn't
respond? (Section 8.9 describes mechanisms for coping in such cases.)

1.7. A Web Server

Go’s libraries makes it easy to write a web server that responds to client requests like those
made by fetch. In this section, we'll show a minimal server that returns the path component
of the URL used to access the server. That is, if the request is for http://local-
host:8000/hello, the response will be URL.Path = "/hello".

gopl.io/chl/serverl

// Serverl is a minimal "echo" server.
package main

import (
"fmt"
"log"
"net/http"
)

func main() {
http.HandleFunc("/", handler) // each request calls handler
log.Fatal(http.ListenAndServe("localhost:8000", nil))

}

// handler echoes the Path component of the request URL r.

func handler(w http.ResponseWriter, r *http.Request) {
fmt.Fprintf(w, "URL.Path = %qg\n", r.URL.Path)

}

The program is only a handful of lines long because library functions do most of the work.
The main function connects a handler function to incoming URLs that begin with /, which is
all URLs, and starts a server listening for incoming requests on port 8000. A request is rep-
resented as a struct of type http.Request, which contains a number of related fields, one of
which is the URL of the incoming request. When a request arrives, it is given to the handler
function, which extracts the path component (/hello) from the request URL and sends it
back as the response, using fmt.Fprintf. Web servers will be explained in detail in
Section 7.7.

Let’s start the server in the background. On Mac OS X or Linux, add an ampersand (&) to the
command; on Microsoft Windows, you will need to run the command without the ampersand
in a separate command window.

$ go run src/gopl.io/chl/serverl/main.go &

We can then make client requests from the command line:


http://localhost:8000/hello
http://localhost:8000/hello
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$ go build gopl.io/chl/fetch

$ ./fetch http://localhost:8000
URL.Path = "/"

$ ./fetch http://localhost:8000/help
URL.Path = "/help"

Alternatively, we can access the server from a web browser, as shown in Figure 1.2.
localhost:8000 X
€« C localhost:8000

URL.Path = "/"

Figure 1.2. A response from the echo server.
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It’s easy to add features to the server. One useful addition is a specific URL that returns a
status of some sort. For example, this version does the same echo but also counts the number
of requests; a request to the URL /count returns the count so far, excluding /count requests

themselves:

gopl.io/chl/server2

// Server2 is a minimal "echo" and counter server.
package main

import (
"fmt"
"log"
"net/http”
"sync"

)

var mu sync.Mutex
var count int

func main() {
http.HandleFunc("/", handler)
http.HandleFunc("/count", counter)
log.Fatal(http.ListenAndServe("localhost:8000", nil))

}

// handler echoes the Path component of the requested URL.
func handler(w http.ResponseWriter, r *http.Request) {
mu.Lock()
count++
mu.Unlock()
fmt.Fprintf(w, "URL.Path = %g\n", r.URL.Path)
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// counter echoes the number of calls so far.

func counter(w http.ResponseWriter, r *http.Request) {
mu.Lock()
fmt.Fprintf(w, "Count %d\n", count)
mu.Unlock()

}

The server has two handlers, and the request URL determines which one is called: a request
for /count invokes counter and all others invoke handler. A handler pattern that ends with
a slash matches any URL that has the pattern as a prefix. Behind the scenes, the server runs
the handler for each incoming request in a separate goroutine so that it can serve multiple
requests simultaneously. However, if two concurrent requests try to update count at the same
time, it might not be incremented consistently; the program would have a serious bug called a
race condition (§9.1). To avoid this problem, we must ensure that at most one goroutine
accesses the variable at a time, which is the purpose of the mu.Lock() and mu.Unlock() calls
that bracket each access of count. We'll look more closely at concurrency with shared vari-
ables in Chapter 9.

As a richer example, the handler function can report on the headers and form data that it
receives, making the server useful for inspecting and debugging requests:

gopl.io/chl/server3

// handler echoes the HTTP request.
func handler(w http.ResponseWriter, r *http.Request) {
fmt.Fprintf(w, "%s %s %s\n", r.Method, r.URL, r.Proto)
for k, v := range r.Header {
fmt.Fprintf(w, "Header[%q] = %g\n", k, v)

}

fmt.Fprintf(w, "Host = %qg\n", r.Host)

fmt.Fprintf(w, "RemoteAddr = %g\n", r.RemoteAddr)

if err := r.ParseForm(); err != nil {
log.Print(err)

}
for k, v := range r.Form {

fmt.Fprintf(w, "Form[%q] = %q\n", k, v)
}

}

This uses the fields of the http.Request struct to produce output like this:

GET /?g=query HTTP/1.1

Header["Accept-Encoding"] ["gzip, deflate, sdch"]
Header["Accept-Language"] = ["en-US,en;q=0.8"]

Header["Connection"] = ["keep-alive"]

Header["Accept"] = ["text/html,application/xhtml+xml,application/xml;..."]
Header["User-Agent"] = ["Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_7_5)..."]
Host = "localhost:8000"

RemoteAddr = "127.0.0.1:59911"

Form["q"] = ["query"]
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Notice how the call to ParseForm is nested within an if statement. Go allows a simple state-
ment such as a local variable declaration to precede the if condition, which is particularly
useful for error handling as in this example. We could have written it as

err := r.ParseForm()

if err = nil {
log.Print(err)

}

but combining the statements is shorter and reduces the scope of the variable err, which is
good practice. We'll define scope in Section 2.7.

In these programs, we've seen three very different types used as output streams. The fetch
program copied HTTP response data to os.Stdout, a file, as did the lissajous program.
The fetchall program threw the response away (while counting its length) by copying it to
the trivial sink ioutil.Discard. And the web server above used fmt.Fprintf to write to an
http.ResponselWriter representing the web browser.

Although these three types differ in the details of what they do, they all satisfy a common
interface, allowing any of them to be used wherever an output stream is needed. That inter-
face, called io.Writer, is discussed in Section 7.1.

Go’s interface mechanism is the topic of Chapter 7, but to give an idea of what it’s capable of,
let’s see how easy it is to combine the web server with the 1issajous function so that ani-
mated GIFs are written not to the standard output, but to the HTTP client. Just add these
lines to the web server:

handler := func(w http.ResponseWriter, r *http.Request) {
lissajous(w)

}
http.HandleFunc("/", handler)

or equivalently:

http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
lissajous(w)

}

The second argument to the HandleFunc function call immediately above is a function literal,
that is, an anonymous function defined at its point of use. We will explain it further in
Section 5.6.

Once you've made this change, visit http://localhost:8000 in your browser. Each time you
load the page, you’ll see a new animation like the one in Figure 1.3.

Exercise 1.12: Modify the Lissajous server to read parameter values from the URL. For exam-
ple, you might arrange it so that a URL like http://localhost:8000/?cycles=20 sets the
number of cycles to 20 instead of the default 5. Use the strconv.Atoi function to convert the
string parameter into an integer. You can see its documentation with go doc strconv.Atoi.


http://localhost:8000
http://localhost:8000/?cycles=20
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lissajous (201x201) x

&« C # localhost:8000/

¥ "0

e
et

SO
Figure 1.3. Animated Lissajous figures in a browser.

1.8. Loose Ends

There is a lot more to Go than we've covered in this quick introduction. Here are some topics
we've barely touched upon or omitted entirely, with just enough discussion that they will be
familiar when they make brief appearances before the full treatment.

Control flow: We covered the two fundamental control-flow statements, if and for, but not
the switch statement, which is a multi-way branch. Here’s a small example:

switch coinflip() {
case "heads":
heads++
case "tails":
tails++
default:
fmt.Println("landed on edge!")

}

The result of calling coinflip is compared to the value of each case. Cases are evaluated from
top to bottom, so the first matching one is executed. The optional default case matches if none
of the other cases does; it may be placed anywhere. Cases do not fall through from one to the
next as in C-like languages (though there is a rarely used fallthrough statement that over-
rides this behavior).

A switch does not need an operand; it can just list the cases, each of which is a boolean
expression:
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func Signum(x int) int {
switch {
case x > O:
return +1
default:
return 0
case X < O:
return -1

}

This form is called a tagless switch; it’s equivalent to switch true.

Like the for and if statements, a switch may include an optional simple statement—a short
variable declaration, an increment or assignment statement, or a function call—that can be
used to set a value before it is tested.

The break and continue statements modify the flow of control. A break causes control to
resume at the next statement after the innermost for, switch, or select statement (which
we'll see later), and as we saw in Section 1.3, a continue causes the innermost for loop to
start its next iteration. Statements may be labeled so that break and continue can refer to
them, for instance to break out of several nested loops at once or to start the next iteration of
the outermost loop. There is even a goto statement, though it’s intended for machine-gener-
ated code, not regular use by programmers.

Named types: A type declaration makes it possible to give a name to an existing type. Since
struct types are often long, they are nearly always named. A familiar example is the definition
of a Point type for a 2-D graphics system:

type Point struct {
X, Y int
}

var p Point
Type declarations and named types are covered in Chapter 2.

Pointers: Go provides pointers, that is, values that contain the address of a variable. In some
languages, notably C, pointers are relatively unconstrained. In other languages, pointers are
disguised as “references,” and there’s not much that can be done with them except pass them
around. Go takes a position somewhere in the middle. Pointers are explicitly visible. The &
operator yields the address of a variable, and the * operator retrieves the variable that the
pointer refers to, but there is no pointer arithmetic. We'll explain pointers in Section 2.3.2.

Methods and interfaces: A method is a function associated with a named type; Go is unusual
in that methods may be attached to almost any named type. Methods are covered in Chap-
ter 6. Interfaces are abstract types that let us treat different concrete types in the same way
based on what methods they have, not how they are represented or implemented. Interfaces
are the subject of Chapter 7.
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Packages: Go comes with an extensive standard library of useful packages, and the Go com-
munity has created and shared many more. Programming is often more about using existing
packages than about writing original code of one’s own. Throughout the book, we will point
out a couple of dozen of the most important standard packages, but there are many more we
don’t have space to mention, and we cannot provide anything remotely like a complete refer-
ence for any package.

Before you embark on any new program, it’s a good idea to see if packages already exist that
might help you get your job done more easily. You can find an index of the standard library
packages at https://golang.org/pkg and the packages contributed by the community at
https://godoc.org. The go doc tool makes these documents easily accessible from the
command line:

$ go doc http.ListenAndServe
package http // import "net/http"

func ListenAndServe(addr string, handler Handler) error

ListenAndServe listens on the TCP network address addr and then
calls Serve with handler to handle requests on incoming connections.

Comments: We have already mentioned documentation comments at the beginning of a
program or package. It’s also good style to write a comment before the declaration of each
function to specify its behavior. These conventions are important, because they are used by
tools like go doc and godoc to locate and display documentation (§10.7.4).

For comments that span multiple lines or appear within an expression or statement, there is
also the /* ... */ notation familiar from other languages. Such comments are sometimes
used at the beginning of a file for a large block of explanatory text to avoid a // on every line.
Within a comment, // and /* have no special meaning, so comments do not nest.


https://golang.org/pkg
https://godoc.org
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fmt.Sscanf function 180
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reflect.valueOf 331, 337
reflect.Zero 345
regexp.Compile 149
regexp.MustCompile 149
result list 119
runtime.Stack 151
SearchIssues 111
sexpr.Marshal 340
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http.Get function 16, 18
http.Handle function 195
http.HandleFunc function 19, 22,
195
http.Handler interface 191, 193
http.HandlerFunc type 194, 203
http.ListenAndServe function 19,
191
http.NewRequest function 253
http.Request type 21,253
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285, 362

import

blank 287

path 284

path domain name 284

renaming 286
incr function 33
increment statement ++ 5, 37, 94
index operation, string 64
indirection operator * 24, 32
infinite loop 6, 120, 228
information hiding 168, 284
init function 44, 49
initialization
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non-reentrant 265
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net.Conn type 220
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net.Dial function 220
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net.Listener.Accept method 220
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channel receive 246
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non-reentrant lock 265
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io 174
io/ioutil 16, 145
links example 138
log 49,130, 170
main 2,285,310
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net 219
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net/url 160
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path 72
path/filepath 72
reflect 330
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strings 7,71,72,289
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syscall 196, 208
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unsafe 354
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Printf %o 10, 55
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paradoxical 267
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range over channel 229
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readers lock 266
read/write mutex 266, 267
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non-blocking channel 246
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230
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rune type 52, 67
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for 47
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select statement 244, 245
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230
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setter method 169
sexpr example 340
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