TheGO

Programming

Language

Alan A. A. Donovan

Brian W. Kernighan

FREE SAMPLE CHAPTER
9 8 M W

SHARE WITH OTHERS

S31¥3S DNILNAWOD TYNOISSIHO¥d ATTSIM-NOSIaay >

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134190440
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134190440
https://plusone.google.com/share?url=http://www.informit.com/title/9780134190440
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134190440
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134190440/Free-Sample-Chapter

The Go
Programming
Language

This page intentionally left blank

The Go

Programming
Language

Alan A. A. Donovan

Google Inc.

Brian W. Kernighan

Princeton University

vvAddison-Wesley

New York « Boston « Indianapolis « San Francisco
Toronto « Montreal « London « Munich e Paris « Madrid
Capetown « Sydney « Tokyo « Singapore « Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business, train-
ing goals, marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.
Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2015950709

Copyright © 2016 Alan A. A. Donovan & Brian W. Kernighan

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, 200 Old Tappan Road, Old Tappan, New
Jersey 07675, or you may fax your request to (201) 236-3290.

Front cover: Millau Viaduct, Tarn valley, southern France. A paragon of simplicity in modern engi-
neering design, the viaduct replaced a convoluted path from capital to coast with a direct route over
the clouds. © Jean-Pierre Lescourret/Corbis.

Back cover: the original Go gopher. © 2009 Renée French. Used under Creative Commons Attribu-
tions 3.0 license.

Typeset by the authors in Minion Pro, Lato, and Consolas, using Go, groff, ghostscript, and a host of
other open-source Unix tools. Figures were created in Google Drawings.

ISBN-13: 978-0-13-419044-0

ISBN-10: 0-13-419044-0

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, October 2015

For Leila and Meg

This page intentionally left blank

Contents

Preface xi
The Origins of Go xii
The Go Project xiii
Organization of the Book XV
Where to Find More Information xvi
Acknowledgments xvii

1. Tutorial 1
1.1. Hello, World 1
1.2. Command-Line Arguments 4
1.3. Finding Duplicate Lines 8
1.4. Animated GIFs 13
1.5. Fetchinga URL 15
1.6. Fetching URLs Concurrently 17
1.7. A Web Server 19
1.8. Loose Ends 23

2. Program Structure 27
2.1. Names 27
2.2. Declarations 28
2.3. Variables 30
2.4. Assignments 36
2.5. Type Declarations 39
2.6. Packages and Files 41

2.7. Scope 45

vii

viii

3. Basic Data Types

3.1
3.2.
3.3.
34.
3.5.
3.6.

Integers

Floating-Point Numbers
Complex Numbers
Booleans

Strings

Constants

4. Composite Types

4.1.
4.2.
4.3.
44.
4.5.
4.6.

Arrays

Slices

Maps

Structs

JSON

Text and HTML Templates

5. Functions

5.1.
5.2.
5.3.
54.
5.5.
5.6.
5.7.
5.8.
5.9.

Function Declarations
Recursion

Multiple Return Values
Errors

Function Values
Anonymous Functions
Variadic Functions
Deferred Function Calls
Panic

5.10. Recover

6. Methods

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.

Method Declarations

Methods with a Pointer Receiver
Composing Types by Struct Embedding
Method Values and Expressions
Example: Bit Vector Type
Encapsulation

7. Interfaces

7.1.
7.2.
7.3.
7.4.
7.5.

Interfaces as Contracts
Interface Types

Interface Satisfaction

Parsing Flags with flag.Value
Interface Values

CONTENTS

51
51
56
61
63
64
75

81
81
84
93
99
107
113

119
119
121
124
127
132
135
142
143
148
151

155
155
158
161
164
165
168

171
171
174
175
179
181

CONTE

7.6.
7.7.
7.8.
7.9.
7.10.
7.11.
7.12.
7.13.
7.14.
7.15.

NTS

Sorting with sort.Interface

The http.Handler Interface

The error Interface

Example: Expression Evaluator
Type Assertions

Discriminating Errors with Type Assertions
Querying Behaviors with Interface Type Assertions

Type Switches
Example: Token-Based XML Decoding
A Few Words of Advice

8. Goroutines and Channels

8.1.
8.2.
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.
8.9.
8.10.

Goroutines
Example: Concurrent Clock Server
Example: Concurrent Echo Server
Channels
Looping in Parallel
Example: Concurrent Web Crawler
Multiplexing with select
Example: Concurrent Directory Traversal
Cancellation

Example: Chat Server

9. Concurrency with Shared Variables

9.1.
9.2.
9.3.
9.4.
9.5.
9.6.
9.7.
9.8.

Race Conditions

Mutual Exclusion: sync.Mutex

Read/Write Mutexes: sync.RWMutex
Memory Synchronization

Lazy Initialization: sync.0Once

The Race Detector

Example: Concurrent Non-Blocking Cache
Goroutines and Threads

10. Packages and the Go Tool

10.1.
10.2.
10.3.
10.4.
10.5.
10.6.
10.7.

Introduction

Import Paths

The Package Declaration
Import Declarations
Blank Imports

Packages and Naming
The Go Tool

186
191
196
197
205
206
208
210
213
216

217
217
219
222
225
234
239
244
247
251
253

257
257
262
266
267
268
271
272
280

283
283
284
285
285
286
289
290

11. Testing
11.1. The go test Tool
11.2. Test Functions
11.3. Coverage
11.4. Benchmark Functions
11.5. Profiling
11.6. Example Functions

12. Reflection
12.1. Why Reflection?
12.2. reflect.Type and reflect.Value
12.3. Display, a Recursive Value Printer
12.4. Example: Encoding S-Expressions
12.5. Setting Variables with reflect.vValue
12.6. Example: Decoding S-Expressions
12.7. Accessing Struct Field Tags
12.8. Displaying the Methods of a Type
12.9. A Word of Caution

13. Low-Level Programming
13.1. unsafe.Sizeof, Alignof, and Offsetof
13.2. unsafe.Pointer
13.3. Example: Deep Equivalence
13.4. Calling C Code with cgo
13.5. Another Word of Caution

Index

CONTENTS

301
302
302
318
321
323
326

329
329
330
333
338
341
344
348
351
352

353
354
356
358
361
366

367

Preface

“Go is an open source programming language that makes it easy to build simple, reliable,
and efficient software” (From the Go web site at golang.org)

Go was conceived in September 2007 by Robert Griesemer, Rob Pike, and Ken Thompson, all
at Google, and was announced in November 2009. The goals of the language and its accom-
panying tools were to be expressive, efficient in both compilation and execution, and effective
in writing reliable and robust programs.

Go bears a surface similarity to C and, like C, is a tool for professional programmers, achiev-
ing maximum effect with minimum means. But it is much more than an updated version of
C. It borrows and adapts good ideas from many other languages, while avoiding features that
have led to complexity and unreliable code. Its facilities for concurrency are new and efficient,
and its approach to data abstraction and object-oriented programming is unusually flexible. It
has automatic memory management or garbage collection.

Go is especially well suited for building infrastructure like networked servers, and tools and
systems for programmers, but it is truly a general-purpose language and finds use in domains
as diverse as graphics, mobile applications, and machine learning. It has become popular as a
replacement for untyped scripting languages because it balances expressiveness with safety:
Go programs typically run faster than programs written in dynamic languages and suffer far
fewer crashes due to unexpected type errors.

Go is an open-source project, so source code for its compiler, libraries, and tools is freely avail-
able to anyone. Contributions to the project come from an active worldwide community. Go
runs on Unix-like systems—Linux, FreeBSD, OpenBSD, Mac OS X—and on Plan 9 and
Microsoft Windows. Programs written in one of these environments generally work without
modification on the others.

Xi

xii PREFACE

This book is meant to help you start using Go effectively right away and to use it well, taking
full advantage of Go’s language features and standard libraries to write clear, idiomatic, and
efficient programs.

The Origins of Go

Like biological species, successful languages beget offspring that incorporate the advantages of
their ancestors; interbreeding sometimes leads to surprising strengths; and, very occasionally,
a radical new feature arises without precedent. We can learn a lot about why a language is the
way it is and what environment it has been adapted for by looking at these influences.

The figure below shows the most important influences of earlier programming languages on
the design of Go.

ALGOL 60
(Backus et al., 1960)

|

Pascal
(Wirth, 1970)
C
(Ritchie, 1972)
CSpP
(Hoare, 1978) Modula-2
* (Wirth, 1980)
Squeak
(Cardelli & Pike, 1985) Oberon
* (Wirth & Gutknecht,
1986)
'\:;Y(\;Sqlgsg)k Object Oberon
+ (Mé&ssenbéck, Templ
& Griesemer, 1990)
Alef Oberon-2 /
. (Wirth & Méssenbéck,
(Winterbottom, 1992) 1991)

Go
(Griesemer, Pike & Thompson, 2009)

Go is sometimes described as a “C-like language,” or as “C for the 21st century” From C, Go
inherited its expression syntax, control-flow statements, basic data types, call-by-value param-
eter passing, pointers, and above all, C’s emphasis on programs that compile to efficient
machine code and cooperate naturally with the abstractions of current operating systems.

THE ORIGINS OF GO xiii

But there are other ancestors in Go’s family tree. One major stream of influence comes from
languages by Niklaus Wirth, beginning with Pascal. Modula-2 inspired the package concept.
Oberon eliminated the distinction between module interface files and module implementation
files. Oberon-2 influenced the syntax for packages, imports, and declarations, and Object
Oberon provided the syntax for method declarations.

Another lineage among Gos ancestors, and one that makes Go distinctive among recent
programming languages, is a sequence of little-known research languages developed at Bell
Labs, all inspired by the concept of communicating sequential processes (CSP) from Tony
Hoare’s seminal 1978 paper on the foundations of concurrency. In CSP, a program is a parallel
composition of processes that have no shared state; the processes communicate and synchro-
nize using channels. But Hoare’s CSP was a formal language for describing the fundamental
concepts of concurrency, not a programming language for writing executable programs.

Rob Pike and others began to experiment with CSP implementations as actual languages. The
first was called Squeak (“A language for communicating with mice”), which provided a lan-
guage for handling mouse and keyboard events, with statically created channels. This was
followed by Newsqueak, which offered C-like statement and expression syntax and Pascal-like
type notation. It was a purely functional language with garbage collection, again aimed at
managing keyboard, mouse, and window events. Channels became first-class values, dynami-
cally created and storable in variables.

The Plan 9 operating system carried these ideas forward in a language called Alef. Alef tried
to make Newsqueak a viable system programming language, but its omission of garbage col-
lection made concurrency too painful.

Other constructions in Go show the influence of non-ancestral genes here and there; for
example iota is loosely from APL, and lexical scope with nested functions is from Scheme
(and most languages since). Here too we find novel mutations. Go’s innovative slices provide
dynamic arrays with efficient random access but also permit sophisticated sharing
arrangements reminiscent of linked lists. And the defer statement is new with Go.

The Go Project

All programming languages reflect the programming philosophy of their creators, which often
includes a significant component of reaction to the perceived shortcomings of earlier lan-
guages. The Go project was borne of frustration with several software systems at Google that
were suffering from an explosion of complexity. (This problem is by no means unique to
Google.)

As Rob Pike put it, “complexity is multiplicative”: fixing a problem by making one part of the
system more complex slowly but surely adds complexity to other parts. With constant pres-
sure to add features and options and configurations, and to ship code quickly, it's easy to
neglect simplicity, even though in the long run simplicity is the key to good software.

xiv PREFACE

Simplicity requires more work at the beginning of a project to reduce an idea to its essence and
more discipline over the lifetime of a project to distinguish good changes from bad or perni-
cious ones. With sufficient effort, a good change can be accommodated without compromis-
ing what Fred Brooks called the “conceptual integrity” of the design but a bad change cannot,
and a pernicious change trades simplicity for its shallow cousin, convenience. Only through
simplicity of design can a system remain stable, secure, and coherent as it grows.

The Go project includes the language itself, its tools and standard libraries, and last but not
least, a cultural agenda of radical simplicity. As a recent high-level language, Go has the bene-
fit of hindsight, and the basics are done well: it has garbage collection, a package system, first-
class functions, lexical scope, a system call interface, and immutable strings in which text is
generally encoded in UTF-8. But it has comparatively few features and is unlikely to add
more. For instance, it has no implicit numeric conversions, no constructors or destructors, no
operator overloading, no default parameter values, no inheritance, no generics, no exceptions,
no macros, no function annotations, and no thread-local storage. The language is mature and
stable, and guarantees backwards compatibility: older Go programs can be compiled and run
with newer versions of compilers and standard libraries.

Go has enough of a type system to avoid most of the careless mistakes that plague program-
mers in dynamic languages, but it has a simpler type system than comparable typed languages.
This approach can sometimes lead to isolated pockets of “untyped” programming within a
broader framework of types, and Go programmers do not go to the lengths that C++ or
Haskell programmers do to express safety properties as type-based proofs. But in practice Go
gives programmers much of the safety and run-time performance benefits of a relatively
strong type system without the burden of a complex one.

Go encourages an awareness of contemporary computer system design, particularly the
importance of locality. Its built-in data types and most library data structures are crafted to
work naturally without explicit initialization or implicit constructors, so relatively few mem-
ory allocations and memory writes are hidden in the code. Go's aggregate types (structs and
arrays) hold their elements directly, requiring less storage and fewer allocations and pointer
indirections than languages that use indirect fields. And since the modern computer is a par-
allel machine, Go has concurrency features based on CSP, as mentioned earlier. The variable-
size stacks of Go’s lightweight threads or goroutines are initially small enough that creating one
goroutine is cheap and creating a million is practical.

Go's standard library, often described as coming with “batteries included,” provides clean
building blocks and APIs for I/O, text processing, graphics, cryptography, networking, and
distributed applications, with support for many standard file formats and protocols. The
libraries and tools make extensive use of convention to reduce the need for configuration and
explanation, thus simplifying program logic and making diverse Go programs more similar to
each other and thus easier to learn. Projects built using the go tool use only file and identifier
names and an occasional special comment to determine all the libraries, executables, tests,
benchmarks, examples, platform-specific variants, and documentation for a project; the Go
source itself contains the build specification.

THE GO PROJECT XV

Organization of the Book

We assume that you have programmed in one or more other languages, whether compiled like
C, C++, and Java, or interpreted like Python, Ruby, and JavaScript, so we won’t spell out every-
thing as if for a total beginner. Surface syntax will be familiar, as will variables and constants,
expressions, control flow, and functions.

Chapter 1 is a tutorial on the basic constructs of Go, introduced through a dozen programs for
everyday tasks like reading and writing files, formatting text, creating images, and communi-
cating with Internet clients and servers.

Chapter 2 describes the structural elements of a Go program—declarations, variables, new
types, packages and files, and scope. Chapter 3 discusses numbers, booleans, strings, and con-
stants, and explains how to process Unicode. Chapter 4 describes composite types, that is,
types built up from simpler ones using arrays, maps, structs, and slices, Go’s approach to
dynamic lists. Chapter 5 covers functions and discusses error handling, panic and recover,
and the defer statement.

Chapters 1 through 5 are thus the basics, things that are part of any mainstream imperative
language. Go’s syntax and style sometimes differ from other languages, but most program-
mers will pick them up quickly. The remaining chapters focus on topics where Go’s approach
is less conventional: methods, interfaces, concurrency, packages, testing, and reflection.

Go has an unusual approach to object-oriented programming. There are no class hierarchies,
or indeed any classes; complex object behaviors are created from simpler ones by composition,
not inheritance. Methods may be associated with any user-defined type, not just structures,
and the relationship between concrete types and abstract types (interfaces) is implicit, so a
concrete type may satisfy an interface that the type’s designer was unaware of. Methods are
covered in Chapter 6 and interfaces in Chapter 7.

Chapter 8 presents Go's approach to concurrency, which is based on the idea of communicat-
ing sequential processes (CSP), embodied by goroutines and channels. Chapter 9 explains the
more traditional aspects of concurrency based on shared variables.

Chapter 10 describes packages, the mechanism for organizing libraries. This chapter also
shows how to make effective use of the go tool, which provides for compilation, testing,
benchmarking, program formatting, documentation, and many other tasks, all within a single
command.

Chapter 11 deals with testing, where Go takes a notably lightweight approach, avoiding
abstraction-laden frameworks in favor of simple libraries and tools. The testing libraries
provide a foundation atop which more complex abstractions can be built if necessary.

Chapter 12 discusses reflection, the ability of a program to examine its own representation
during execution. Reflection is a powerful tool, though one to be used carefully; this chapter
explains finding the right balance by showing how it is used to implement some important Go
libraries. Chapter 13 explains the gory details of low-level programming that uses the unsafe
package to step around Go’s type system, and when that is appropriate.

xvi PREFACE

Each chapter has a number of exercises that you can use to test your understanding of Go, and
to explore extensions and alternatives to the examples from the book.

All but the most trivial code examples in the book are available for download from the public
Git repository at gopl.io. Each example is identified by its package import path and may be
conveniently fetched, built, and installed using the go get command. You'll need to choose a
directory to be your Go workspace and set the GOPATH environment variable to point to it.
The go tool will create the directory if necessary. For example:

$ export GOPATH=$HOME/gobook # choose workspace directory
$ go get gopl.io/chl/helloworld # fetch, build, install

$ $GOPATH/bin/helloworld # run

Hello, it

To run the examples, you will need at least version 1.5 of Go.

$ go version
go version gol.5 linux/amdé64

Follow the instructions at https://golang.org/doc/install if the go tool on your com-
puter is older or missing.

Where to Find More Information

The best source for more information about Go is the official web site, https://golang.org,
which provides access to the documentation, including the Go Programming Language Specifi-
cation, standard packages, and the like. There are also tutorials on how to write Go and how
to write it well, and a wide variety of online text and video resources that will be valuable com-
plements to this book. The Go Blog at blog.golang.org publishes some of the best writing
on Go, with articles on the state of the language, plans for the future, reports on conferences,
and in-depth explanations of a wide variety of Go-related topics.

One of the most useful aspects of online access to Go (and a regrettable limitation of a paper
book) is the ability to run Go programs from the web pages that describe them. This func-
tionality is provided by the Go Playground at play.golang.org, and may be embedded
within other pages, such as the home page at golang.org or the documentation pages served
by the godoc tool.

The Playground makes it convenient to perform simple experiments to check one’s under-
standing of syntax, semantics, or library packages with short programs, and in many ways
takes the place of a read-eval-print loop (REPL) in other languages. Its persistent URLs are
great for sharing snippets of Go code with others, for reporting bugs or making suggestions.

Built atop the Playground, the Go Tour at tour.golang.org is a sequence of short interactive
lessons on the basic ideas and constructions of Go, an orderly walk through the language.

The primary shortcoming of the Playground and the Tour is that they allow only standard
libraries to be imported, and many library features—networking, for example—are restricted

https://golang.org/doc/install
https://golang.org

WHERE TO FIND MORE INFORMATION Xvii

for practical or security reasons. They also require access to the Internet to compile and run
each program. So for more elaborate experiments, you will have to run Go programs on your
own computer. Fortunately the download process is straightforward, so it should not take
more than a few minutes to fetch the Go distribution from golang.org and start writing and
running Go programs of your own.

Since Go is an open-source project, you can read the code for any type or function in the stan-
dard library online at https://golang.org/pkg; the same code is part of the downloaded
distribution. Use this to figure out how something works, or to answer questions about
details, or merely to see how experts write really good Go.

Acknowledgments

Rob Pike and Russ Cox, core members of the Go team, read the manuscript several times with
great care; their comments on everything from word choice to overall structure and organiza-
tion have been invaluable. While preparing the Japanese translation, Yoshiki Shibata went far
beyond the call of duty; his meticulous eye spotted numerous inconsistencies in the English
text and errors in the code. We greatly appreciate thorough reviews and critical comments on
the entire manuscript from Brian Goetz, Corey Kosak, Arnold Robbins, Josh Bleecher Snyder,
and Peter Weinberger.

We are indebted to Sameer Ajmani, Ittai Balaban, David Crawshaw, Billy Donohue, Jonathan
Feinberg, Andrew Gerrand, Robert Griesemer, John Linderman, Minux Ma, Bryan Mills, Bala
Natarajan, Cosmos Nicolaou, Paul Staniforth, Nigel Tao, and Howard Trickey for many
helpful suggestions. We also thank David Brailsford and Raph Levien for typesetting advice.

Our editor Greg Doench at Addison-Wesley got the ball rolling originally and has been con-
tinuously helpful ever since. The AW production team—John Fuller, Dayna Isley, Julie Nahil,
Chuti Prasertsith, and Barbara Wood—has been outstanding; authors could not hope for bet-
ter support.

Alan Donovan wishes to thank: Sameer Ajmani, Chris Demetriou, Walt Drummond, and Reid
Tatge at Google for allowing him time to write; Stephen Donovan, for his advice and timely
encouragement; and above all, his wife Leila Kazemi, for her unhesitating enthusiasm and
unwavering support for this project, despite the long hours of distraction and absenteeism
from family life that it entailed.

Brian Kernighan is deeply grateful to friends and colleagues for their patience and forbearance
as he moved slowly along the path to understanding, and especially to his wife Meg, who has
been unfailingly supportive of book-writing and so much else.

New York
October 2015

https://golang.org/pkg

This page intentionally left blank

1

Tutorial

This chapter is a tour of the basic components of Go. We hope to provide enough information
and examples to get you off the ground and doing useful things as quickly as possible. The
examples here, and indeed in the whole book, are aimed at tasks that you might have to do in
the real world. In this chapter we'll try to give you a taste of the diversity of programs that one
might write in Go, ranging from simple file processing and a bit of graphics to concurrent
Internet clients and servers. We certainly won’t explain everything in the first chapter, but
studying such programs in a new language can be an effective way to get started.

When you're learning a new language, there’s a natural tendency to write code as you would
have written it in a language you already know. Be aware of this bias as you learn Go and try
to avoid it. We've tried to illustrate and explain how to write good Go, so use the code here as
a guide when you're writing your own.

1.1. Hello, World

We'll start with the now-traditional “hello, world” example, which appears at the beginning of
The C Programming Language, published in 1978. C is one of the most direct influences on
Go, and “hello, world” illustrates a number of central ideas.

gopl.io/chl/helloworld

package main
import "fmt"

func main() {
fmt.Println("Hello, #®R")
}

2 CHAPTER 1. TUTORIAL

Go is a compiled language. The Go toolchain converts a source program and the things it
depends on into instructions in the native machine language of a computer. These tools are
accessed through a single command called go that has a number of subcommands. The sim-
plest of these subcommands is run, which compiles the source code from one or more source
files whose names end in .go, links it with libraries, then runs the resulting executable file.
(We will use $ as the command prompt throughout the book.)

$ go run helloworld.go
Not surprisingly, this prints
Hello, tt®
Go natively handles Unicode, so it can process text in all the world’s languages.

If the program is more than a one-shot experiment, it’s likely that you would want to compile
it once and save the compiled result for later use. That is done with go build:

$ go build helloworld.go

This creates an executable binary file called helloworld that can be run any time without fur-
ther processing:

$./helloworld
Hello, it5#

We have labeled each significant example as a reminder that you can obtain the code from the
book’s source code repository at gopl.io:

gopl.io/chi/helloworld

If you run go get gopl.io/chl/helloworld, it will fetch the source code and place it in the
corresponding directory. There’s more about this topic in Section 2.6 and Section 10.7.

Let’s now talk about the program itself. Go code is organized into packages, which are similar
to libraries or modules in other languages. A package consists of one or more . go source files
in a single directory that define what the package does. Each source file begins with a package
declaration, here package main, that states which package the file belongs to, followed by a list
of other packages that it imports, and then the declarations of the program that are stored in
that file.

The Go standard library has over 100 packages for common tasks like input and output,
sorting, and text manipulation. For instance, the fmt package contains functions for printing
formatted output and scanning input. Println is one of the basic output functions in fmt; it
prints one or more values, separated by spaces, with a newline character at the end so that the
values appear as a single line of output.

Package main is special. It defines a standalone executable program, not a library. Within
package main the function main is also special—it's where execution of the program begins.
Whatever main does is what the program does. Of course, main will normally call upon func-
tions in other packages to do much of the work, such as the function fmt.Println.

SECTION 1.1. HELLO, WORLD 3

We must tell the compiler what packages are needed by this source file; that’s the role of the
import declaration that follows the package declaration. The “hello, world” program uses
only one function from one other package, but most programs will import more packages.

You must import exactly the packages you need. A program will not compile if there are
missing imports or if there are unnecessary ones. This strict requirement prevents references
to unused packages from accumulating as programs evolve.

The import declarations must follow the package declaration. After that, a program consists
of the declarations of functions, variables, constants, and types (introduced by the keywords
func, var, const, and type); for the most part, the order of declarations does not matter. This
program is about as short as possible since it declares only one function, which in turn calls
only one other function. To save space, we will sometimes not show the package and import
declarations when presenting examples, but they are in the source file and must be there to
compile the code.

A function declaration consists of the keyword func, the name of the function, a parameter
list (empty for main), a result list (also empty here), and the body of the function—the state-
ments that define what it does—enclosed in braces. We'll take a closer look at functions in
Chapter 5.

Go does not require semicolons at the ends of statements or declarations, except where two or
more appear on the same line. In effect, newlines following certain tokens are converted into
semicolons, so where newlines are placed matters to proper parsing of Go code. For instance,
the opening brace { of the function must be on the same line as the end of the func declara-
tion, not on a line by itself, and in the expression x + y, a newline is permitted after but not
before the + operator.

Go takes a strong stance on code formatting. The gofmt tool rewrites code into the standard
format, and the go tool’s fmt subcommand applies gofmt to all the files in the specified pack-
age, or the ones in the current directory by default. All Go source files in the book have been
run through gofmt, and you should get into the habit of doing the same for your own code.
Declaring a standard format by fiat eliminates a lot of pointless debate about trivia and, more
importantly, enables a variety of automated source code transformations that would be
infeasible if arbitrary formatting were allowed.

Many text editors can be configured to run gofmt each time you save a file, so that your source
code is always properly formatted. A related tool, goimports, additionally manages the inser-
tion and removal of import declarations as needed. It is not part of the standard distribution
but you can obtain it with this command:

$ go get golang.org/x/tools/cmd/goimports

For most users, the usual way to download and build packages, run their tests, show their doc-
umentation, and so on, is with the go tool, which we’ll look at in Section 10.7.

4 CHAPTER 1. TUTORIAL

1.2. Command-Line Arguments

Most programs process some input to produce some output; that’s pretty much the definition
of computing. But how does a program get input data on which to operate? Some programs
generate their own data, but more often, input comes from an external source: a file, a network
connection, the output of another program, a user at a keyboard, command-line arguments,
or the like. The next few examples will discuss some of these alternatives, starting with com-
mand-line arguments.

The os package provides functions and other values for dealing with the operating system in a
platform-independent fashion. Command-line arguments are available to a program in a
variable named Args that is part of the os package; thus its name anywhere outside the os
package is os . Args.

The variable os . Args is a slice of strings. Slices are a fundamental notion in Go, and we'll talk
a lot more about them soon. For now, think of a slice as a dynamically sized sequence s of
array elements where individual elements can be accessed as s[i] and a contiguous subse-
quence as s[m:n]. The number of elements is given by len(s). As in most other program-
ming languages, all indexing in Go uses half-open intervals that include the first index but
exclude the last, because it simplifies logic. For example, the slice s[m:n], where 0 <m<n <
len(s), contains n-m elements.

The first element of os.Args, os.Args[@], is the name of the command itself; the other ele-
ments are the arguments that were presented to the program when it started execution. A
slice expression of the form s[m:n] yields a slice that refers to elements m through n-1, so the
elements we need for our next example are those in the slice os.Args[1:1en(os.Args)]. Ifm
or n is omitted, it defaults to 0 or 1en(s) respectively, so we can abbreviate the desired slice as
os.Args[1:].

Here’s an implementation of the Unix echo command, which prints its command-line argu-
ments on a single line. It imports two packages, which are given as a parenthesized list rather
than as individual import declarations. Either form is legal, but conventionally the list form is
used. The order of imports doesn't matter; the gofmt tool sorts the package names into
alphabetical order. (When there are several versions of an example, we will often number
them so you can be sure of which one we're talking about.)

gopl.io/chl/echol

// Echol prints its command-line arguments.
package main

import (
"emt”
"os

SECTION 1.2. COMMAND-LINE ARGUMENTS 5

func main() {
var s, sep string

for i :=1; i < len(os.Args); i++ {
S += sep + o0s.Args[i]
sep = " "

}

fmt.Println(s)
}

Comments begin with //. All text from a // to the end of the line is commentary for
programmers and is ignored by the compiler. By convention, we describe each package in a
comment immediately preceding its package declaration; for a main package, this comment is
one or more complete sentences that describe the program as a whole.

The var declaration declares two variables s and sep, of type string. A variable can be ini-
tialized as part of its declaration. If it is not explicitly initialized, it is implicitly initialized to
the zero value for its type, which is @ for numeric types and the empty string "" for strings.
Thus in this example, the declaration implicitly initializes s and sep to empty strings. We'll
have more to say about variables and declarations in Chapter 2.

For numbers, Go provides the usual arithmetic and logical operators. When applied to
strings, however, the + operator concatenates the values, so the expression

sep + os.Args[i]

represents the concatenation of the strings sep and os.Args[i]. The statement we used in
the program,

S += sep + os.Args[i]

is an assignment statement that concatenates the old value of s with sep and os.Args[i] and
assigns it back to s; it is equivalent to

S = s + sep + 0s.Args[i]

The operator += is an assignment operator. Each arithmetic and logical operator like + or * has
a corresponding assignment operator.

The echo program could have printed its output in a loop one piece at a time, but this version
instead builds up a string by repeatedly appending new text to the end. The string s starts life
empty, that is, with value "", and each trip through the loop adds some text to it; after the first
iteration, a space is also inserted so that when the loop is finished, there is one space between
each argument. This is a quadratic process that could be costly if the number of arguments is
large, but for echo, that’s unlikely. We'll show a number of improved versions of echo in this
chapter and the next that will deal with any real inefficiency.

The loop index variable i is declared in the first part of the for loop. The := symbol is part of
a short variable declaration, a statement that declares one or more variables and gives them
appropriate types based on the initializer values; there’s more about this in the next chapter.

The increment statement i++ adds 1 to i; it's equivalent to i += 1 which is in turn equivalent
to i =1+ 1. There’s a corresponding decrement statement i-- that subtracts 1. These are

6 CHAPTER 1. TUTORIAL

statements, not expressions as they are in most languages in the C family, so j = i++ is illegal,
and they are postfix only, so - -1 is not legal either.

The for loop is the only loop statement in Go. It has a number of forms, one of which is
illustrated here:

for initialization; condition; post {
// zero or more statements

}

Parentheses are never used around the three components of a for loop. The braces are
mandatory, however, and the opening brace must be on the same line as the post statement.

The optional initialization statement is executed before the loop starts. If it is present, it
must be a simple statement, that is, a short variable declaration, an increment or assignment
statement, or a function call. The condition is a boolean expression that is evaluated at the
beginning of each iteration of the loop; if it evaluates to true, the statements controlled by the
loop are executed. The post statement is executed after the body of the loop, then the condi-
tion is evaluated again. The loop ends when the condition becomes false.

Any of these parts may be omitted. If there is no initialization and no post, the semi-
colons may also be omitted:

// a traditional "while" loop
for condition {

/...
}

If the condition is omitted entirely in any of these forms, for example in

// a traditional infinite loop
for {

/...
}

the loop is infinite, though loops of this form may be terminated in some other way, like a
break or return statement.

Another form of the for loop iterates over a range of values from a data type like a string or a
slice. To illustrate, here’s a second version of echo:

gopl.io/chl/echo2

// Echo2 prints its command-line arguments.
package main

import (
Emt”
"os

SECTION 1.2. COMMAND-LINE ARGUMENTS 7

func main() {
s, sep := "", ""
for _, arg := range os.Args[1:] {
S += sep + arg
sep = " "

}
fmt.Println(s)

}

In each iteration of the loop, range produces a pair of values: the index and the value of the
element at that index. In this example, we don’t need the index, but the syntax of a range loop
requires that if we deal with the element, we must deal with the index too. One idea would be
to assign the index to an obviously temporary variable like temp and ignore its value, but Go
does not permit unused local variables, so this would result in a compilation error.

The solution is to use the blank identifier, whose name is _ (that is, an underscore). The blank
identifier may be used whenever syntax requires a variable name but program logic does not,
for instance to discard an unwanted loop index when we require only the element value. Most
Go programmers would likely use range and _ to write the echo program as above, since the
indexing over os.Args is implicit, not explicit, and thus easier to get right.

This version of the program uses a short variable declaration to declare and initialize s and
sep, but we could equally well have declared the variables separately. There are several ways
to declare a string variable; these are all equivalent:

s :=
var s string

var s =
var s string =

Why should you prefer one form to another? The first form, a short variable declaration, is
the most compact, but it may be used only within a function, not for package-level variables.
The second form relies on default initialization to the zero value for strings, which is "". The
third form is rarely used except when declaring multiple variables. The fourth form is explicit
about the variable’s type, which is redundant when it is the same as that of the initial value but
necessary in other cases where they are not of the same type. In practice, you should generally
use one of the first two forms, with explicit initialization to say that the initial value is
important and implicit initialization to say that the initial value doesn’t matter.

As noted above, each time around the loop, the string s gets completely new contents. The +=
statement makes a new string by concatenating the old string, a space character, and the next
argument, then assigns the new string to s. The old contents of s are no longer in use, so they
will be garbage-collected in due course.

If the amount of data involved is large, this could be costly. A simpler and more efficient
solution would be to use the Join function from the strings package:

8 CHAPTER 1. TUTORIAL

gopl.io/chl/echo3

func main() {
fmt.Println(strings.Join(os.Args[1:], " "))
}

Finally, if we don’t care about format but just want to see the values, perhaps for debugging, we
can let Println format the results for us:

fmt.Println(os.Args[1:])

The output of this statement is like what we would get from strings.Join, but with sur-
rounding brackets. Any slice may be printed this way.

Exercise 1.1: Modify the echo program to also print os.Args[@], the name of the command
that invoked it.

Exercise 1.2: Modify the echo program to print the index and value of each of its arguments,
one per line.

Exercise 1.3: Experiment to measure the difference in running time between our potentially
inefficient versions and the one that uses strings.Join. (Section 1.6 illustrates part of the
time package, and Section 11.4 shows how to write benchmark tests for systematic per-
formance evaluation.)

1.3. Finding Duplicate Lines

Programs for file copying, printing, searching, sorting, counting, and the like all have a similar
structure: a loop over the input, some computation on each element, and generation of output
on the fly or at the end. We'll show three variants of a program called dups; it is partly inspired
by the Unix uniq command, which looks for adjacent duplicate lines. The structures and
packages used are models that can be easily adapted.

The first version of dup prints each line that appears more than once in the standard input,
preceded by its count. This program introduces the if statement, the map data type, and the
bufio package.

gopl.io/chl/dupl

// Dupl prints the text of each line that appears more than
// once in the standard input, preceded by its count.
package main

import (
"bufio"
"fmt"
"os

SECTION 1.3. FINDING DUPLICATE LINES 9

func main() {
counts := make(map[string]int)
input := bufio.NewScanner(os.Stdin)
for input.Scan() {
counts[input.Text()]++

}
// NOTE: ignoring potential errors from input.Err()
for line, n := range counts {
ifn>1{
fmt.Printf("%d\t%s\n", n, line)
}
}

}

As with for, parentheses are never used around the condition in an if statement, but braces
are required for the body. There can be an optional else part that is executed if the condition
is false.

A map holds a set of key/value pairs and provides constant-time operations to store, retrieve,
or test for an item in the set. The key may be of any type whose values can compared with ==,
strings being the most common example; the value may be of any type at all. In this example,
the keys are strings and the values are ints. The built-in function make creates a new empty
map; it has other uses too. Maps are discussed at length in Section 4.3.

Each time dup reads a line of input, the line is used as a key into the map and the cor-
responding value is incremented. The statement counts[input.Text()]++ is equivalent to
these two statements:

line := input.Text()
counts[line] = counts[line] + 1

It’s not a problem if the map doesn't yet contain that key. The first time a new line is seen, the
expression counts[line] on the right-hand side evaluates to the zero value for its type, which
is @ for int.

To print the results, we use another range-based for loop, this time over the counts map. As
before, each iteration produces two results, a key and the value of the map element for that
key. The order of map iteration is not specified, but in practice it is random, varying from one
run to another. This design is intentional, since it prevents programs from relying on any par-
ticular ordering where none is guaranteed.

Onward to the bufio package, which helps make input and output efficient and convenient.
One of its most useful features is a type called Scanner that reads input and breaks it into lines
or words; it’s often the easiest way to process input that comes naturally in lines.

The program uses a short variable declaration to create a new variable input that refers to a
bufio.Scanner:

input := bufio.NewScanner(os.Stdin)

10 CHAPTER 1. TUTORIAL

The scanner reads from the program’s standard input. Each call to input.Scan() reads the
next line and removes the newline character from the end; the result can be retrieved by call-
ing input.Text(). The Scan function returns true if there is a line and false when there is
no more input.

The function fmt.Printf, like printf in C and other languages, produces formatted output
from a list of expressions. Its first argument is a format string that specifies how subsequent
arguments should be formatted. The format of each argument is determined by a conversion
character, a letter following a percent sign. For example, %d formats an integer operand using
decimal notation, and %s expands to the value of a string operand.

Printf has over a dozen such conversions, which Go programmers call verbs. This table is far
from a complete specification but illustrates many of the features that are available:

%d decimal integer

%x, %0, %b integer in hexadecimal, octal, binary
%f, %g, % floating-point number: 3.141593 3.141592653589793 3.141593e+00

%t boolean: true or false

%c rune (Unicode code point)

%s string

%q quoted string "abc" or rune 'c*
%V any value in a natural format

%T type of any value

%% literal percent sign (no operand)

The format string in dup1 also contains a tab \t and a newline \n. String literals may contain
such escape sequences for representing otherwise invisible characters. Printf does not write a
newline by default. By convention, formatting functions whose names end in f, such as
log.Printf and fmt.Errorf, use the formatting rules of fmt.Printf, whereas those whose
names end in 1n follow Println, formatting their arguments as if by %v, followed by a
newline.

Many programs read either from their standard input, as above, or from a sequence of named
files. The next version of dup can read from the standard input or handle a list of file names,
using os.Open to open each one:

gopl.io/chl/dup2

// Dup2 prints the count and text of lines that appear more than once
// in the input. It reads from stdin or from a list of named files.
package main

import (
"bufio"
"fmt"
"os

SECTION 1.3. FINDING DUPLICATE LINES 11

func main() {
counts := make(map[string]int)
files := os.Args[1l:]
if len(files) == 0 {
countLines(os.Stdin, counts)
} else {
for _, arg :

range files {

f, err := o0s.Open(arg)
if err != nil {
fmt.Fprintf(os.Stderr, "dup2: %v\n", err)
continue
}
countLines(f, counts)
f.Close()
}
}
for line, n := range counts {
ifn>1{
fmt.Printf("%d\t%s\n", n, line)
}
}
}
func countLines(f *os.File, counts map[string]int) {
input := bufio.NewScanner(f)
for input.Scan() {
counts[input.Text()]++
}
// NOTE: ignoring potential errors from input.Err()
}

The function os.0pen returns two values. The first is an open file (*os.File) that is used in
subsequent reads by the Scanner.

The second result of os.0Open is a value of the built-in error type. If err equals the special
built-in value nil, the file was opened successfully. The file is read, and when the end of the
input is reached, Close closes the file and releases any resources. On the other hand, if err is
not nil, something went wrong. In that case, the error value describes the problem. Our sim-
ple-minded error handling prints a message on the standard error stream using Fprintf and
the verb %v, which displays a value of any type in a default format, and dup then carries on
with the next file; the continue statement goes to the next iteration of the enclosing for loop.

In the interests of keeping code samples to a reasonable size, our early examples are intention-
ally somewhat cavalier about error handling. Clearly we must check for an error from
o0s.0pen; however, we are ignoring the less likely possibility that an error could occur while
reading the file with input.Scan. We will note places where we've skipped error checking,
and we will go into the details of error handling in Section 5.4.

Notice that the call to countLines precedes its declaration. Functions and other package-level
entities may be declared in any order.

12 CHAPTER 1. TUTORIAL

A map is a reference to the data structure created by make. When a map is passed to a func-
tion, the function receives a copy of the reference, so any changes the called function makes to
the underlying data structure will be visible through the caller’s map reference too. In our
example, the values inserted into the counts map by countLines are seen by main.

The versions of dup above operate in a “streaming” mode in which input is read and broken
into lines as needed, so in principle these programs can handle an arbitrary amount of input.
An alternative approach is to read the entire input into memory in one big gulp, split it into
lines all at once, then process the lines. The following version, dup3, operates in that fashion.
It introduces the function ReadFile (from the io/ioutil package), which reads the entire
contents of a named file, and strings.Split, which splits a string into a slice of substrings.
(Split is the opposite of strings.Join, which we saw earlier.)

We've simplified dup3 somewhat. First, it only reads named files, not the standard input, since
ReadFile requires a file name argument. Second, we moved the counting of the lines back
into main, since it is now needed in only one place.

gopl.io/chl/dup3
package main

import (
"fmt"
"io/ioutil"
"og"
"strings"

)

func main() {
counts := make(map[string]int)
for _, filename := range os.Args[1:] {
data, err := ioutil.ReadFile(filename)
if err != nil {
fmt.Fprintf(os.Stderr, "dup3: %v\n", err)
continue
}
for _, line := range strings.Split(string(data), "\n") {
counts[line]++
}
}
for line, n := range counts {
ifn>1{
fmt.Printf("%d\t%s\n", n, line)
}

}

ReadFile returns a byte slice that must be converted into a string so it can be split by
strings.Split. We will discuss strings and byte slices at length in Section 3.5.4.

SECTION 1.4. ANIMATED GIFS 13

Under the covers, bufio.Scanner, ioutil.ReadFile, and ioutil.WriteFile use the Read
and Write methods of *os.File, but it’s rare that most programmers need to access those
lower-level routines directly. The higher-level functions like those from bufio and io/ioutil
are easier to use.

Exercise 1.4: Modify dup2 to print the names of all files in which each duplicated line occurs.

1.4. Animated GIFs

The next program demonstrates basic usage of Go’s standard image packages, which we'll use
to create a sequence of bit-mapped images and then encode the sequence as a GIF animation.
The images, called Lissajous figures, were a staple visual effect in sci-fi films of the 1960s. They
are the parametric curves produced by harmonic oscillation in two dimensions, such as two
sine waves fed into the x and y inputs of an oscilloscope. Figure 1.1 shows some examples.

A\ WA
W

Figure 1.1. Four Lissajous figures.

There are several new constructs in this code, including const declarations, struct types, and
composite literals. Unlike most of our examples, this one also involves floating-point com-
putations. We'll discuss these topics only briefly here, pushing most details off to later chap-
ters, since the primary goal right now is to give you an idea of what Go looks like and the
kinds of things that can be done easily with the language and its libraries.

gopl.io/chl/lissajous

// Lissajous generates GIF animations of random Lissajous figures.
package main

import (
"image"
"image/color"
"image/gif"
"ig"
"math"
"math/rand"

os"

14 CHAPTER 1. TUTORIAL

var palette = []color.Color{color.White, color.Black}

const (
whiteIndex = @ // first color in palette
blackIndex = 1 // next color in palette

)

func main() {
lissajous(os.Stdout)

}
func lissajous(out io.Writer) {
const (
cycles =5 // number of complete x oscillator revolutions
res = 0.001 // angular resolution
size = 100 // image canvas covers [-size..+size]
nframes = 64 // number of animation frames
delay =38 // delay between frames in 1@ms units
)
freq := rand.Float64() * 3.0 // relative frequency of y oscillator
anim := gif.GIF{LoopCount: nframes}
phase := 0.0 // phase difference
for i := 0; i < nframes; i++ {
rect := image.Rect(@, 0, 2*size+l, 2*size+1)
img := image.NewPaletted(rect, palette)
for t := 0.0; t < cycles*2*math.Pi; t += res {
X := math.Sin(t)
y := math.Sin(t*freq + phase)
img.SetColorIndex(size+int(x*size+0.5), size+int(y*size+0.5),
blackIndex)
}
phase += 0.1
anim.Delay = append(anim.Delay, delay)
anim.Image = append(anim.Image, img)
}
gif.EncodeAll(out, &anim) // NOTE: ignoring encoding errors
}

After importing a package whose path has multiple components, like image/color, we refer
to the package with a name that comes from the last component. Thus the variable
color.White belongs to the image/color package and gif.GIF belongs to image/gif.

A const declaration (§3.6) gives names to constants, that is, values that are fixed at compile
time, such as the numerical parameters for cycles, frames, and delay. Like var declarations,
const declarations may appear at package level (so the names are visible throughout the pack-
age) or within a function (so the names are visible only within that function). The value of a
constant must be a number, string, or boolean.

The expressions []Jcolor.Color{...} and gif.GIF{...} are composite literals (§4.2, $4.4.1),
a compact notation for instantiating any of Go’s composite types from a sequence of element
values. Here, the first one is a slice and the second one is a struct.

SECTION 1.5. FETCHING A URL 15

The type gif.GIF isa struct type (§4.4). A struct is a group of values called fields, often of dif-
ferent types, that are collected together in a single object that can be treated as a unit. The
variable anim is a struct of type gif.GIF. The struct literal creates a struct value whose Loop-
Count field is set to nframes; all other fields have the zero value for their type. The individual
fields of a struct can be accessed using dot notation, as in the final two assignments which
explicitly update the Delay and Image fields of anim.

The lissajous function has two nested loops. The outer loop runs for 64 iterations, each
producing a single frame of the animation. It creates a new 201x201 image with a palette of
two colors, white and black. All pixels are initially set to the palette’s zero value (the zeroth
color in the palette), which we set to white. Each pass through the inner loop generates a new
image by setting some pixels to black. The result is appended, using the built-in append func-
tion (§4.2.1), to a list of frames in anim, along with a specified delay of 80ms. Finally the
sequence of frames and delays is encoded into GIF format and written to the output stream
out. The type of out is io.Writer, which lets us write to a wide range of possible destina-
tions, as we'll show soon.

The inner loop runs the two oscillators. The x oscillator is just the sine function. The y oscil-
lator is also a sinusoid, but its frequency relative to the x oscillator is a random number
between 0 and 3, and its phase relative to the x oscillator is initially zero but increases with
each frame of the animation. The loop runs until the x oscillator has completed five full
cycles. At each step, it calls SetColorIndex to color the pixel corresponding to (x, y) black,
which is at position 1 in the palette.

The main function calls the 1issajous function, directing it to write to the standard output,
so this command produces an animated GIF with frames like those in Figure 1.1:

$ go build gopl.io/chl/lissajous
$./lissajous >out.gif

Exercise 1.5: Change the Lissajous program’s color palette to green on black, for added
authenticity. To create the web color #RRGGBB, use color.RGBA{@XRR, ©XGG, OxBB, Oxff},
where each pair of hexadecimal digits represents the intensity of the red, green, or blue com-
ponent of the pixel.

Exercise 1.6: Modify the Lissajous program to produce images in multiple colors by adding
more values to palette and then displaying them by changing the third argument of Set-
ColorIndex in some interesting way.

1.5. Fetching a URL

For many applications, access to information from the Internet is as important as access to the
local file system. Go provides a collection of packages, grouped under net, that make it easy
to send and receive information through the Internet, make low-level network connections,
and set up servers, for which Go’s concurrency features (introduced in Chapter 8) are particu-
larly useful.

16 CHAPTER 1. TUTORIAL

To illustrate the minimum necessary to retrieve information over HTTP, here’s a simple
program called fetch that fetches the content of each specified URL and prints it as uninter-
preted text; it’s inspired by the invaluable utility curl. Obviously one would usually do more
with such data, but this shows the basic idea. We will use this program frequently in the book.

gopl.io/chl/fetch

// Fetch prints the content found at a URL.
package main

import (
"fmt"
"io/ioutil"
"net/http"
"og"

)

func main() {
for _, url := range os.Args[1:] {
resp, err := http.Get(url)

if err != nil {
fmt.Fprintf(os.Stderr, "fetch: %v\n", err)
os.Exit(1)

}

b, err := ioutil.ReadAll(resp.Body)
resp.Body.Close()

if err != nil {
fmt.Fprintf(os.Stderr, "fetch: reading %s: %v\n", url, err)
os.Exit(1)

}

fmt.Printf("%s", b)

}

This program introduces functions from two packages, net/http and io/ioutil. The
http.Get function makes an HTTP request and, if there is no error, returns the result in the
response struct resp. The Body field of resp contains the server response as a readable
stream. Next, ioutil.ReadAll reads the entire response; the result is stored in b. The Body
stream is closed to avoid leaking resources, and Printf writes the response to the standard
output.

$ go build gopl.io/chl/fetch

$./fetch http://gopl.io

<html>

<head>

<title>The Go Programming Language</title>

If the HTTP request fails, fetch reports the failure instead:

SECTION 1.6. FETCHING URLS CONCURRENTLY 17

$./fetch http://bad.gopl.io
fetch: Get http://bad.gopl.io: dial tcp: lookup bad.gopl.io: no such host

In either error case, os.Exit (1) causes the process to exit with a status code of 1.

Exercise 1.7: The function call io.Copy(dst, src) reads from src and writes to dst. Use it
instead of ioutil.ReadAll to copy the response body to os.Stdout without requiring a
buffer large enough to hold the entire stream. Be sure to check the error result of io.Copy.

Exercise 1.8: Modify fetch to add the prefix http:// to each argument URL if it is missing.
You might want to use strings.HasPrefix.

Exercise 1.9: Modify fetch to also print the HTTP status code, found in resp.Status.

1.6. Fetching URLs Concurrently

One of the most interesting and novel aspects of Go is its support for concurrent program-
ming. This is a large topic, to which Chapter 8 and Chapter 9 are devoted, so for now we'll
give you just a taste of Go's main concurrency mechanisms, goroutines and channels.

The next program, fetchall, does the same fetch of a URLs contents as the previous example,
but it fetches many URLs, all concurrently, so that the process will take no longer than the
longest fetch rather than the sum of all the fetch times. This version of fetchall discards the
responses but reports the size and elapsed time for each one:

gopl.io/chl/fetchall

// Fetchall fetches URLs in parallel and reports their times and sizes.
package main

import (
"fmt"
"io"
"io/ioutil"
"net/http"
"os

"time"

)

func main() {
start := time.Now()
ch := make(chan string)
for _, url := range os.Args[1l:] {
go fetch(url, ch) // start a goroutine
}
for range os.Args[1:] {
fmt.Println(<-ch) // receive from channel ch

}
fmt.Printf("%.2fs elapsed\n", time.Since(start).Seconds())

18 CHAPTER 1. TUTORIAL

func fetch(url string, ch chan<- string) {

start := time.Now()

resp, err := http.Get(url)

if err != nil {
ch <- fmt.Sprint(err) // send to channel ch
return

}

nbytes, err := io.Copy(ioutil.Discard, resp.Body)

resp.Body.Close() // don't leak resources

if err != nil {
ch <- fmt.Sprintf("while reading %s: %v", url, err)
return

}

secs := time.Since(start).Seconds()

ch <- fmt.Sprintf("%.2fs %7d %s", secs, nbytes, url)
}

Here’s an example:

$ go build gopl.io/chl/fetchall
$./fetchall https://golang.org http://gopl.io https://godoc.org

0.14s 6852 https://godoc.org
0.16s 7261 https://golang.org
0.48s 2475 http://gopl.io

0.48s elapsed

A goroutine is a concurrent function execution. A channel is a communication mechanism
that allows one goroutine to pass values of a specified type to another goroutine. The function
main runs in a goroutine and the go statement creates additional goroutines.

The main function creates a channel of strings using make. For each command-line argument,
the go statement in the first range loop starts a new goroutine that calls fetch asynchronously
to fetch the URL using http.Get. The io.Copy function reads the body of the response and
discards it by writing to the ioutil.Discard output stream. Copy returns the byte count,
along with any error that occurred. As each result arrives, fetch sends a summary line on the
channel ch. The second range loop in main receives and prints those lines.

When one goroutine attempts a send or receive on a channel, it blocks until another goroutine
attempts the corresponding receive or send operation, at which point the value is transferred
and both goroutines proceed. In this example, each fetch sends a value (ch <- expression) on
the channel ch, and main receives all of them (<-ch). Having main do all the printing ensures
that output from each goroutine is processed as a unit, with no danger of interleaving if two
goroutines finish at the same time.

Exercise 1.10: Find a web site that produces a large amount of data. Investigate caching by
running fetchall twice in succession to see whether the reported time changes much. Do
you get the same content each time? Modify fetchall to print its output to a file so it can be
examined.

SECTION 1.7. A WEB SERVER 19

Exercise 1.11: Try fetchall with longer argument lists, such as samples from the top million
web sites available at alexa.com. How does the program behave if a web site just doesn't
respond? (Section 8.9 describes mechanisms for coping in such cases.)

1.7. A Web Server

Go’s libraries makes it easy to write a web server that responds to client requests like those
made by fetch. In this section, we'll show a minimal server that returns the path component
of the URL used to access the server. That is, if the request is for http://local-
host:8000/hello, the response will be URL.Path = "/hello".

gopl.io/chl/serverl

// Serverl is a minimal "echo" server.
package main

import (
"fmt"
"log"
"net/http"
)

func main() {
http.HandleFunc("/", handler) // each request calls handler
log.Fatal(http.ListenAndServe("localhost:8000", nil))

}

// handler echoes the Path component of the request URL r.

func handler(w http.ResponseWriter, r *http.Request) {
fmt.Fprintf(w, "URL.Path = %qg\n", r.URL.Path)

}

The program is only a handful of lines long because library functions do most of the work.
The main function connects a handler function to incoming URLs that begin with /, which is
all URLs, and starts a server listening for incoming requests on port 8000. A request is rep-
resented as a struct of type http.Request, which contains a number of related fields, one of
which is the URL of the incoming request. When a request arrives, it is given to the handler
function, which extracts the path component (/hello) from the request URL and sends it
back as the response, using fmt.Fprintf. Web servers will be explained in detail in
Section 7.7.

Let’s start the server in the background. On Mac OS X or Linux, add an ampersand (&) to the
command; on Microsoft Windows, you will need to run the command without the ampersand
in a separate command window.

$ go run src/gopl.io/chl/serverl/main.go &

We can then make client requests from the command line:

http://localhost:8000/hello
http://localhost:8000/hello

20 CHAPTER 1.

$ go build gopl.io/chl/fetch

$./fetch http://localhost:8000
URL.Path = "/"

$./fetch http://localhost:8000/help
URL.Path = "/help"

Alternatively, we can access the server from a web browser, as shown in Figure 1.2.
localhost:8000 X
€« C localhost:8000

URL.Path = "/"

Figure 1.2. A response from the echo server.

TUTORIAL

It’s easy to add features to the server. One useful addition is a specific URL that returns a
status of some sort. For example, this version does the same echo but also counts the number
of requests; a request to the URL /count returns the count so far, excluding /count requests

themselves:

gopl.io/chl/server2

// Server2 is a minimal "echo" and counter server.
package main

import (
"fmt"
"log"
"net/http”
"sync"

)

var mu sync.Mutex
var count int

func main() {
http.HandleFunc("/", handler)
http.HandleFunc("/count", counter)
log.Fatal(http.ListenAndServe("localhost:8000", nil))

}

// handler echoes the Path component of the requested URL.
func handler(w http.ResponseWriter, r *http.Request) {
mu.Lock()
count++
mu.Unlock()
fmt.Fprintf(w, "URL.Path = %g\n", r.URL.Path)

SECTION 1.7. A WEB SERVER 21

// counter echoes the number of calls so far.

func counter(w http.ResponseWriter, r *http.Request) {
mu.Lock()
fmt.Fprintf(w, "Count %d\n", count)
mu.Unlock()

}

The server has two handlers, and the request URL determines which one is called: a request
for /count invokes counter and all others invoke handler. A handler pattern that ends with
a slash matches any URL that has the pattern as a prefix. Behind the scenes, the server runs
the handler for each incoming request in a separate goroutine so that it can serve multiple
requests simultaneously. However, if two concurrent requests try to update count at the same
time, it might not be incremented consistently; the program would have a serious bug called a
race condition (§9.1). To avoid this problem, we must ensure that at most one goroutine
accesses the variable at a time, which is the purpose of the mu.Lock() and mu.Unlock() calls
that bracket each access of count. We'll look more closely at concurrency with shared vari-
ables in Chapter 9.

As a richer example, the handler function can report on the headers and form data that it
receives, making the server useful for inspecting and debugging requests:

gopl.io/chl/server3

// handler echoes the HTTP request.
func handler(w http.ResponseWriter, r *http.Request) {
fmt.Fprintf(w, "%s %s %s\n", r.Method, r.URL, r.Proto)
for k, v := range r.Header {
fmt.Fprintf(w, "Header[%q] = %g\n", k, v)

}

fmt.Fprintf(w, "Host = %qg\n", r.Host)

fmt.Fprintf(w, "RemoteAddr = %g\n", r.RemoteAddr)

if err := r.ParseForm(); err != nil {
log.Print(err)

}
for k, v := range r.Form {

fmt.Fprintf(w, "Form[%q] = %q\n", k, v)
}

}

This uses the fields of the http.Request struct to produce output like this:

GET /?g=query HTTP/1.1

Header["Accept-Encoding"] ["gzip, deflate, sdch"]
Header["Accept-Language"] = ["en-US,en;q=0.8"]

Header["Connection"] = ["keep-alive"]

Header["Accept"] = ["text/html,application/xhtml+xml,application/xml;..."]
Header["User-Agent"] = ["Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_7_5)..."]
Host = "localhost:8000"

RemoteAddr = "127.0.0.1:59911"

Form["q"] = ["query"]

22 CHAPTER 1. TUTORIAL

Notice how the call to ParseForm is nested within an if statement. Go allows a simple state-
ment such as a local variable declaration to precede the if condition, which is particularly
useful for error handling as in this example. We could have written it as

err := r.ParseForm()

if err = nil {
log.Print(err)

}

but combining the statements is shorter and reduces the scope of the variable err, which is
good practice. We'll define scope in Section 2.7.

In these programs, we've seen three very different types used as output streams. The fetch
program copied HTTP response data to os.Stdout, a file, as did the lissajous program.
The fetchall program threw the response away (while counting its length) by copying it to
the trivial sink ioutil.Discard. And the web server above used fmt.Fprintf to write to an
http.ResponselWriter representing the web browser.

Although these three types differ in the details of what they do, they all satisfy a common
interface, allowing any of them to be used wherever an output stream is needed. That inter-
face, called io.Writer, is discussed in Section 7.1.

Go’s interface mechanism is the topic of Chapter 7, but to give an idea of what it’s capable of,
let’s see how easy it is to combine the web server with the 1issajous function so that ani-
mated GIFs are written not to the standard output, but to the HTTP client. Just add these
lines to the web server:

handler := func(w http.ResponseWriter, r *http.Request) {
lissajous(w)

}
http.HandleFunc("/", handler)

or equivalently:

http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
lissajous(w)

}

The second argument to the HandleFunc function call immediately above is a function literal,
that is, an anonymous function defined at its point of use. We will explain it further in
Section 5.6.

Once you've made this change, visit http://localhost:8000 in your browser. Each time you
load the page, you’ll see a new animation like the one in Figure 1.3.

Exercise 1.12: Modify the Lissajous server to read parameter values from the URL. For exam-
ple, you might arrange it so that a URL like http://localhost:8000/?cycles=20 sets the
number of cycles to 20 instead of the default 5. Use the strconv.Atoi function to convert the
string parameter into an integer. You can see its documentation with go doc strconv.Atoi.

http://localhost:8000
http://localhost:8000/?cycles=20

SECTION 1.8. LOOSE ENDS 23

lissajous (201x201) x

&« C # localhost:8000/

¥ "0

e
et

SO
Figure 1.3. Animated Lissajous figures in a browser.

1.8. Loose Ends

There is a lot more to Go than we've covered in this quick introduction. Here are some topics
we've barely touched upon or omitted entirely, with just enough discussion that they will be
familiar when they make brief appearances before the full treatment.

Control flow: We covered the two fundamental control-flow statements, if and for, but not
the switch statement, which is a multi-way branch. Here’s a small example:

switch coinflip() {
case "heads":
heads++
case "tails":
tails++
default:
fmt.Println("landed on edge!")

}

The result of calling coinflip is compared to the value of each case. Cases are evaluated from
top to bottom, so the first matching one is executed. The optional default case matches if none
of the other cases does; it may be placed anywhere. Cases do not fall through from one to the
next as in C-like languages (though there is a rarely used fallthrough statement that over-
rides this behavior).

A switch does not need an operand; it can just list the cases, each of which is a boolean
expression:

24 CHAPTER 1. TUTORIAL

func Signum(x int) int {
switch {
case x > O:
return +1
default:
return 0
case X < O:
return -1

}

This form is called a tagless switch; it’s equivalent to switch true.

Like the for and if statements, a switch may include an optional simple statement—a short
variable declaration, an increment or assignment statement, or a function call—that can be
used to set a value before it is tested.

The break and continue statements modify the flow of control. A break causes control to
resume at the next statement after the innermost for, switch, or select statement (which
we'll see later), and as we saw in Section 1.3, a continue causes the innermost for loop to
start its next iteration. Statements may be labeled so that break and continue can refer to
them, for instance to break out of several nested loops at once or to start the next iteration of
the outermost loop. There is even a goto statement, though it’s intended for machine-gener-
ated code, not regular use by programmers.

Named types: A type declaration makes it possible to give a name to an existing type. Since
struct types are often long, they are nearly always named. A familiar example is the definition
of a Point type for a 2-D graphics system:

type Point struct {
X, Y int
}

var p Point
Type declarations and named types are covered in Chapter 2.

Pointers: Go provides pointers, that is, values that contain the address of a variable. In some
languages, notably C, pointers are relatively unconstrained. In other languages, pointers are
disguised as “references,” and there’s not much that can be done with them except pass them
around. Go takes a position somewhere in the middle. Pointers are explicitly visible. The &
operator yields the address of a variable, and the * operator retrieves the variable that the
pointer refers to, but there is no pointer arithmetic. We'll explain pointers in Section 2.3.2.

Methods and interfaces: A method is a function associated with a named type; Go is unusual
in that methods may be attached to almost any named type. Methods are covered in Chap-
ter 6. Interfaces are abstract types that let us treat different concrete types in the same way
based on what methods they have, not how they are represented or implemented. Interfaces
are the subject of Chapter 7.

SECTION 1.8. LOOSE ENDS 25

Packages: Go comes with an extensive standard library of useful packages, and the Go com-
munity has created and shared many more. Programming is often more about using existing
packages than about writing original code of one’s own. Throughout the book, we will point
out a couple of dozen of the most important standard packages, but there are many more we
don’t have space to mention, and we cannot provide anything remotely like a complete refer-
ence for any package.

Before you embark on any new program, it’s a good idea to see if packages already exist that
might help you get your job done more easily. You can find an index of the standard library
packages at https://golang.org/pkg and the packages contributed by the community at
https://godoc.org. The go doc tool makes these documents easily accessible from the
command line:

$ go doc http.ListenAndServe
package http // import "net/http"

func ListenAndServe(addr string, handler Handler) error

ListenAndServe listens on the TCP network address addr and then
calls Serve with handler to handle requests on incoming connections.

Comments: We have already mentioned documentation comments at the beginning of a
program or package. It’s also good style to write a comment before the declaration of each
function to specify its behavior. These conventions are important, because they are used by
tools like go doc and godoc to locate and display documentation (§10.7.4).

For comments that span multiple lines or appear within an expression or statement, there is
also the /* ... */ notation familiar from other languages. Such comments are sometimes
used at the beginning of a file for a large block of explanatory text to avoid a // on every line.
Within a comment, // and /* have no special meaning, so comments do not nest.

https://golang.org/pkg
https://godoc.org

This page intentionally left blank

!, negation operator 63

%, remainder operator 52, 166

&8, short-circuit AND operator 63

&, address-of operator 24, 32, 94,
158, 167

&, implicit 158, 167

&*, AND-NOT operator 53

&*, bit-clear operator 53

' quote character 56

* indirection operator 24, 32

++, increment statement 5, 37, 94

+, string concatenation operator 5,
65

+, unary operator 53

+=, -=, etc,, assignment operator 5

-, unary operator 53

- -, decrement statement 5, 37

... argument 139, 142

... array length 82

... parameter 91, 142, 143,172

... path 292,299

/*...*/ comment 5,25

// comment 5, 25

:= short variable declaration 5, 31,
49

<<, left shift operator 54

==, comparison operator 40, 63

>>, right shift operator 54

A, bitwise complement operator 53

A, exclusive OR operator 53

_, blank identifier 7, 38, 95, 120, 126,
287

* backquote character 66

| in template 113

|, bitwise OR operator 166, 167

| I, short-circuit OR operator 63

Abstract Syntax Notation One
(ASN.1) 107
abstract type 24, 171
abstraction, premature 216, 316, 317
ad hoc polymorphism 211
address of local variable 32, 36
address of struct literal 103
addressable expression 159, 341
addressable value 32
address-of operator & 24, 32, 94,
158, 167
aggregate type 81,99
Alef programming language xiii
algorithm
breadth-first search 139, 239
depth-first search 136
Fibonacci 37, 218
GCD 37
insertion sort 101
Lissajous 15
slice rotation 86
topological sort 136
aliasing, pointer 33
alignment 354
allocation
heap 36
memory 36, 71, 89, 169, 209, 322
stack 36
anchor element, HTML 122
AND operator &&, short-circuit 63
AND-NOT operator & 53
animation, GIF 13
anonymous
function 22, 135, 236
function, defer 146
function, recursive 137

367

Index

struct field 104, 105, 106, 162
API
encoding 213, 340
error 127,152
package 284, 296, 311, 333, 352
runtime 324
SQL 211
system call 196
template 115
token-based decoder 213, 215,
347
APL programming language xiii
append built-in function 88, 90, 91
appendInt example 88
argument
. 139,142
command-line 4, 18, 33, 43, 179,
180, 290, 313
function 119
pointer 33, 83
slice 86
arithmetic expression evaluator 197
array
comparison 83
length, ... 82
literal 82, 84
type 81
underlying 84, 88, 91, 187
zero value 82
ASCII 56, 64, 66, 67, 305
ASN.1 (Abstract Syntax Notation
One) 107
assembly line, cake 234
assertion
function 316
interface type 208, 210

368

test 306

type 205, 211
assignability 38,175
assignability, interface 175
assignment

implicit 38

multiple-value 37

operator +=, -=, etc. 5

operators 36, 52

statement 5, 7, 36, 52, 94, 173

tuple 31,37
associativity, operator 52
atomic operation 264
attack, HTML injection 115
attack, SQL injection 211
autoescape example 117

back-door, package 315
back-off, exponential 130
backquote character, ~ 66
bank example package 258, 261, 263
bare return 126
basename example 72
behavior, undefined 260
Benchmark function 302, 321
bidirectional to unidirectional
channel conversion 231
binary
operators, table of 52
semaphore 262
tree 102
bit vector 165
bit-clear operator & 53
bit-set data type 77
bitwise
complement operator A 53
operators, table of 53
OR operator | 166, 167
black-box test 310
blank identifier _ 7, 38, 95, 120, 126,
287
blank import 287
block
file 46
lexical 46, 120, 135, 141,212
local 46
package 46
universe 46
blocking profile 324
Blog, Go xvi, 326
boiling example 29
bool type 63
boolean
constant, false 63
constant, true 63
zero value 30
breadthFirst function 139
breadth-first search algorithm 139,
239

break statement 24, 46
break statement, labeled 249
brittle test 317
broadcast 251, 254, 276
Brooks, Fred xiv
btoi function 64
buffered channel 226,231
bufio package 9
bufio.NewReader function 98
bufio.NewScanner function 9
(*bufio.Reader).ReadRune
method 98
bufio.Scanner type 9
(*bufio.Scanner).Err method 97
(*bufio.Scanner).Scan method 9
(*bufio.Scanner).Split method
99
bufio.ScanWords function 99
+build comments 296
build constraints 296
build tags 296
building packages 293
built-in function
append 88, 90, 91
cap 84,232
close 226,228, 251
complex 61
copy 89
delete 94
imag 61
len 4, 54, 64, 65, 81, 84, 233
make 9, 18, 88, 94, 225
new 34
panic 148, 149
real 61
recover 152
built-in interface, error 196
built-in type, error 11, 128, 149,
196
byte slice to string conversion 73
byte type 52
ByteCounter example 173
bytes package 71,73
bytes.Buffer type 74,169, 172, 185
(*bytes.Buffer).Grow method
169
(*bytes.Buffer).WriteByte
method 74
(*bytes.Buffer).WriteRune
method 74
(*bytes.Buffer).WriteString
method 74
bytes.Equal function 86
bzip C code 362
bzip example package 363
bzipper example 365

C++ programming language xiv, xv,
361

INDEX

C programming language xii, xv, 1,
6, 52, 260, 361
cache, concurrent non-blocking 272
cache, non-blocking 275
cake assembly line 234
call
by reference 83
by value 83,120, 158
interface method 182
ok value from function 128
calling C from Go 361
camel case 28
cancellation 251, 252
cancellation of HT TP request 253
cap built-in function 84, 232
capacity, channel 226, 232, 233
capacity, slice 88, 89
capturing iteration variable 140
capturing loop variable 141, 236,
240
case in type switch 212
case, select 245
Celsius type 39
CelsiusFlag function 181
cf example 43
cgo tool 361, 362
<-ch, channel receive 18, 225, 232
ch<-, channel send 18, 225, 232
chaining, method 114
chan type 225
channel
buffered 226, 231
capacity 226, 232, 233
close 228,251
closing a 225
communication 225, 245
comparison 225
conversion, bidirectional to
unidirectional 231
draining a 229, 252
make 18, 225
nil 246, 249
polling 246
range over 229
receive <-ch 18, 225, 232
receive, non-blocking 246
receive, ok value from 229
send ch<- 18,225,232
synchronous 226
type 18
type <-chan T, receive-only 230
type chan<- T, send-only 230
type, unidirectional 230, 231
unbuffered 226
zero value 225, 246
character conversion 71
character test 71
charcount example 98
chat example 254

INDEX

chat server 253
CheckQuota function 312,313
client, email 312
client, SMTP 312
clock example 220, 222
clock server, concurrent 219
close built-in function 226, 228,
251
close, channel 228, 251
closer goroutine 238, 250
closing a channel 225
closure, lexical 136
cmplx.Sqrt function 61
code
format 3, 6,9, 48
point, Unicode 67
production 301
ColoredPoint example 161
comma example 73
command, testing a 308
command-line argument 4, 18, 33,
43,179, 180, 290, 313
comment
/*...%/ 5,25
// 5,25
doc 42,296
// Output 326
comments, +build 296
communicating sequential processes
(CSP) xiii, 217
communication, channel 225, 245
comparability 9, 38, 40, 53, 86, 93,
97, 104
comparison
array 83
channel 225
function 133
interface 184
map 96
operator == 40, 63
operators 40, 93
operators, table of 53
slice 87
string 65
struct 104
compilation, separate 284
complement operator #, bitwise 53
complex built-in function 61
complex type 61
composite literal 14
composite type xv, 14, 81
composition, parallel 224
composition, type xv, 107, 162, 189
compress/bzip2 package 361
compression 361
conceptual integrity xiv
concrete type 24, 171, 211, 214
concurrency 17,217,257
excessive 241, 242

safe 275

safety 256,257,272, 365

with shared variables 257
concurrent

clock server 219

directory traversal 247

echo server 222

non-blocking cache 272

web crawler 239
confinement, serial 262
confinement, variable 261
consistency, sequential 268, 269
const declaration 14, 75
constant

false boolean 63

generator, iota xiii, 77

time.Minute 76

time.Second 164

true boolean 63

types, untyped 78
constants, precision of 78
constraints, build 296
contention, lock 267, 272
context switch 280
continue statement 24, 46
continue statement, labeled 249
contracts, interfaces as 171
control flow 46
conversion

bidirectional to unidirectional

channel 231

byte slice to string 73

character 71

implicit 79

narrowing 40, 55

numeric 79

operation 40, 55, 64, 71, 78, 79,

173, 187, 194, 208, 231, 353, 358

rune slice to string 71

rune to string 71

string 71

string to byte slice 40, 73

string to rune slice 71, 88

unsafe.Pointer 356
copy built-in function 89
countdown example 244, 245, 246
counting semaphore 241
coverage, statement 318, 320
coverage, test 318
coverage_test example 319
CPU profile 324
crawl example 240, 242, 243
crawler, concurrent web 239
crawler, web 119
critical section 263, 270, 275
cross-compilation 295
cryptography 55, 83, 121, 325
crypto/sha256 package 83
customSort example 190

369

cyclic data structure 337
cyclic test dependency 314

data

race 259, 267,275

structure, cyclic 337

structure, recursive 101, 102, 107

type, bit-set 77
database driver, MySQL 284
database/sql package 211, 288
daysAgo function 114
deadbeef 55, 80
deadlock 233, 240, 265
declaration

const 14,75

func 3,29,119

import 3,28, 42, 284, 285, 362

method 40, 155

package 2,28, 41, 285

package-level 28

scope 45,137

shadowing 46, 49, 206, 212

short variable 5,7, 30, 31

statement, short variable 7

struct 99

type 39

var 5,30
declarations, order of 48
decode example, S-expression 347
decoder API, token-based 213, 215,

347

decoding, S-expression 344
decoding, XML 213
decrement statement -- 5, 37
dedup example 97
deep equivalence 87,317, 358
default case in select 246
default case in switch 23
default case in type switch 212
defer anonymous function 146
defer example 150, 151
defer statement 144, 150, 264
deferred function call 144
delete built-in function 94
depth-first search algorithm 136
dereference, implicit 159
diagram

helloworld substring 69

pipeline 228

slice capacity growth 90

slice of months 84

string sharing 65

struct hole 355

thumbnail sequence 238
digital artifact example 178
Dijkstra, Edsger 318
Dilbert 100
directed acyclic graph 136, 284
directory traversal, concurrent 247

370

discriminated union 211, 213, 214
Display function 333

display example 333

display function 334
displaying methods of a type 351
Distance function 156

doc comment 42, 296

doc.go doc comment file 42, 296
documentation, package 296
domain name, import path 284
dot . in template 113
downloading packages 292

Dr. Strangelove 336

draining a channel 229, 252

du example 247, 249, 250

dup example 9, 11,12

duplicate suppression 276
dynamic dispatch 183

dynamic type, interface 181

echo example 5, 7, 34, 309
echo test 309
echo server, concurrent 222
echo_test.go 310
effective tests, writing 316, 317
email client 312
embarrassingly parallel 235
embedded struct field 161
embedding, interface 174
embedding, struct 104, 161
Employee struct 100
empty

interface type 176

select statement 245

string 5,7, 30

struct 102
encapsulation 168, 284
encoding API 213, 340
encoding, S-expression 338
encoding/json package 107
encoding/xml package 107,213
end of file (EOF) 131
enum 77
environment variable

GOARCH 292, 295

GOMAXPROCS 281, 321

GOOS 292, 295

GOPATH xvi, 291, 295

GOROOT 292
equal function 87, 96
equality, pointer 32
equivalence, deep 87,317, 358
error built-in interface 196
error built-in type 11, 128, 149, 196
error API 127,152
error.Error method 196
errorf function 143
error-handling strategies 128, 152,

310, 316

errors package 196
errors.New function 196
escape
hexadecimal 66
HTML 116
octal 66
sequence 10
sequences, table of 66
Unicode 68, 107
URL 111
escaping variables 36
eval example 198
event multiplexing 244
events 227, 244
Example function 302, 326
example
autoescape 117
basename 72
boiling 29
ByteCounter 173
bzipper 365
cf 43
charcount 98
chat 254
clock 220,222
ColoredPoint 161
comma 73
countdown 244, 245, 246
coverage_test 319
crawl 240, 242, 243
customSort 190
dedup 97
defer 150, 151
digital artifact 178
display 333
du 247, 249, 250
dup 9,11,12
echo 5,7, 34, 309
eval 198
fetch 16, 148
fetchall 18
findlinks 122,125,139
ftoc 29
github 110, 111
graph 99
helloworld 1,2
http 192, 194, 195
intset 166
issues 112
issueshtml 115
issuesreport 114
jpeg 287
lissajous 14, 22,35
mandelbrot 62
memo 275, 276,277,278, 279
methods 351
movie 108,110
netcat 221, 223,227
netflag 78

INDEX

nonempty 92

outline 123,133

package, bank 258, 261, 263

package, bzip 363

package, format 332

package, geometry 156

package, http 192

package, 1inks 138

package, memo 273

package, params 348

package, storage 312,313

package, tempconv 42

package, thumbnail 235

palindrome 303, 305, 308

params 348

Parse 152

pipeline 228,230, 231

playlist 187

rev 86

reverb 223,224

server 19,21

sexpr 340

S-expression decode 347

sha256 83

sleep 179

spinner 218

squares 135

sum 142

surface 59,203

tempconv 39, 180, 289

temperature conversion 29

tempflag 181

test of word 303

thumbnail 236,237,238

title 153

topoSort 136

trace 146

treesort 102

urlvalues 160

wait 130

word 303, 305, 308

xmlselect 215

appendInt 88
exception 128, 149
excessive concurrency 241, 242
exclusion, mutual 262, 267
exclusive lock 263, 266, 270
exclusive OR operator * 53
exponential back-off 130
export of struct field 101, 106, 109,

110, 168

export_test.go file 315
Expr.Check method 202
expression

addressable 159, 341

evaluator 197

method 164

receive 225
Expr.Eval method 199

INDEX

extending a slice 86

Extensible Markup Language (XML)
107

external test package 285,314

Fahrenheit type 39
failure message, test 306
fallthrough statement 23,212
false boolean constant 63
fetch example 16, 148
fetchall example 18
fib function 37,218
Fibonacci algorithm 37,218
field

anonymous struct 104, 105, 106,

162
embedded struct 161
export of struct 101, 106, 109,
110, 168

order, struct 101, 355

selector 156

struct 15,99

tag, omitempty 109

tag, struct 109, 348
figure

Lissajous 13

Mandelbrot 63

3-D surface 58,203
File Transfer Protocol (FTP) 222
file

block 46

export_test.go 315

name, Microsoft Windows 72

name, POSIX 72

_test.go 285, 302, 303
findlinks example 122, 125, 139
fixed-size stack 124
flag package 33,179
flag

go tool -bench 321

go tool -benchmem 322

go tool -covermode 319

go tool -coverprofile 319

go tool -cpuprofile 324

go tool -nodecount 325

go tool -text 325

go tool -web 326

godoc -analysis 176

go list -f 315

go -race 271

go test -race 274

go test -run 305

go test -v 304
flag.Args function 34
flag.Bool function 34
flag.Duration function 179
flag.Parse function 34
flag.String function 34
flag.Value interface 179, 180

floating-point
number 56
precision 56, 57, 63,78
truncation 40, 55
fmt package 2
fmt.Errorf function 129, 196
fmt.Fprintf function 172
fmt.Printf function 10
fmt.Println function 2
fmt.Scanf function 75
fmt.Sscanf function 180
fmt.Stringer interface 180,210
for scope 47
for statement 6
forEachNode function 133
foreign-function interface (FFI) 361
format, code 3, 6,9, 48
format example package 332
formatAtom function 332
framework, web 193
ftoc example 29
func declaration 3,29, 119
function
anonymous 22, 135, 236
append built-in 88, 90, 91
argument 119
assertion 316
Benchmark 302, 321
body, missing 121
breadthFirst 139
btoi 64
bufio.NewReader 98
bufio.NewScanner 9
bufio.ScanWords 99
bytes.Equal 86
call, deferred 144
call, ok value from 128
cap built-in 84, 232
CelsiusFlag 181
CheckQuota 312,313
close built-in 226, 228, 251
cmplx.Sqrt 61
comparison 133
complex built-in 61
copy built-in 89
daysAgo 114
delete built-in 94
Display 333
display 334
Distance 156
equal 87,96
errorf 143
errors.New 196
Example 302, 326
fib 37,218
flag.Args 34
flag.Bool 34
flag.Duration 179
flag.Parse 34

371

flag.String 34

fmt.Errorf 129, 196

fmt.Fprintf 172

fmt.Printf 10

fmt.Println 2

fmt.Scanf 75

fmt.Sscanf 180

forEachNode 133

formatAtom 332

ged 37

handler 19, 21, 152, 191, 194, 195,
348

html.Parse 121,125

http.DefaultServeMux 195

http.Error 193

http.Get 16,18

http.Handle 195

http.HandleFunc 19,22, 195

http.ListenAndServe 19,191

http.NewRequest 253

http.ServeMux 193

hypot 120

imag built-in 61

image.Decode 288

image.RegisterFormat 288

incr 33

init 44,49

intsToString 74

io.Copy 17,18

ioutil.ReadAll 16,272

ioutil.ReadDir 247

ioutil.ReadFile 12,145

io.WriteString 209

itob 64

json.Marshal 108

json.MarshalIndent 108

json.NewDecoder 111

json.NewEncoder 111

json.Unmarshal 110, 114

len built-in 4, 54, 64, 65, 81, 84,
233

links.Extract 138

literal 22, 135, 227

log.Fatalf 49, 130

main 2,310

make built-in 9, 18, 88, 94, 225

math.Hypot 156

math.Inf 57

math.IsInf 57

math.IsNaN 57

math.NaN 57

multi-valued 11, 30, 37, 96, 125,
126

mustCopy 221

net.Dial 220

net.Listen 220

new built-in 34

nil 132

os.Close 11

372

os.Exit 16, 34, 48
os.Getwd 48
os.IsExist 207
os.IsNotExist 207
os.IsPermission 207
0s.0pen 11

os.Stat 247

panic built-in 148, 149
parameter 119
params.Unpack 349
png.Encode 62
PopCount 45

real built-in 61

recover built-in 152
recursive anonymous 137
reflect.TypeOf 330
reflect.valueOf 331, 337
reflect.Zero 345
regexp.Compile 149
regexp.MustCompile 149
result list 119
runtime.Stack 151
SearchIssues 111
sexpr.Marshal 340
sexpr.readlList 347
sexpr.Unmarshal 347
signature 120
sort.Float64s 191
sort.Ints 191
sort.IntsAreSorted 191
sort.Reverse 189
sort.Strings 95, 137, 191
Sprint 330

sqlQuote 211,212
strconv.Atoi 22,75
strconv.FormatInt 75
strconv.Itoa 75
strconv.ParseInt 75
strconv.ParseUint 75
strings.Contains 69
strings.HasPrefix 69
strings.HasSuffix 69
strings.Index 289
strings.Join 7,12
strings.Map 133
strings.NewReader 289
strings.NewReplacer 289
strings.Split 12
strings.ToLower 72
strings.ToUpper 72
template.Must 114
template.New 114

Test 302

time.After 245
time.AfterFunc 164
time.Now 220
time.Parse 220
time.Since 114
time.Tick 244, 246

title 144, 145

type 119, 120
unicode.IsDigit 71
unicode.IsLetter 71
unicode.IsLower 71
unicode.IsSpace 93
unicode.IsUpper 71
unsafe.AlignOf 355
unsafe.Offsetof 355
unsafe.Sizeof 354
url.QueryEscape 111
utf8.DecodeRuneInString 69
utf8.RuneCountInString 69
value 132

variadic 142, 172

visit 122

WaitForServer 130

walkDir 247

zero value 132

garbage collection xi, xiii, 7, 35, 230,
353, 357
garbage collector, moving 357
GCD algorithm 37
gcd function 37
geometry example package 156
geometry.Point.Distance method
156
getter method 169
GIF animation 13
GitHub issue tracker 110
github example 110, 111
Go
Playground xvi, 326
Blog xvi, 326
issue 110, 112, 358
go tool 2,42, 44,290
go tool -bench flag 321
go tool -benchmem flag 322
go tool -covermode flag 319
go tool -coverprofile flag 319
go tool -cpuprofile flag 324
go tool -nodecount flag 325
go tool pprof 325
go tool -text flag 325
go tool -web flag 326
go tool cover 318,319
go doc tool 25
go statement 18, 218
GOARCH environment variable 292,
295
go build 2, 286, 293, 294
go doc 296
godoc -analysis flag 176
godoc tool xvi, 25,297, 326
go env 292
gofmt tool 3, 4, 44, 286
go get xvi, 2,292,293
go help 290

INDEX

goimports tool 3,44, 286
go install 295
golang.org/x/net/html package
122
golint tool 292
go list 298, 315
go list -f flag 315
GOMAXPROCS environment variable
281, 321
GOOS environment variable 292, 295
GOPATH environment variable xvi,
291, 295
gopl.io repository xvi
go -race flag 271
GOROOT environment variable 292
goroutine 18, 217, 233, 235
closer 238,250
identity 282
leak 233,236, 246
monitor 261, 277
multiplexing 281
vs. OS thread 280
go run 2,294
go test 301, 302, 304
go test -race flag 274
go test -run flag 305
go test -v flag 304
goto statement 24
graph example 99
GraphViz 326
Griesemer, Robert xi
growth, stack 124, 280, 358
guarding mutex 263

half-open interval 4
handler function 19, 21, 152, 191,
194, 195, 348
“happens before” relation 226, 257,
261,277
“has a” relationship 162
hash table 9,93
Haskell programming language xiv
heap
allocation 36
profile 324
variable 36
helloworld example 1,2
helloworld substring diagram 69
hexadecimal escape 66
hexadecimal literal 55
hidden pointer 357
Hoare, Tony xiii
hole, struct 354
HTML
anchor element 122
escape 116
injection attack 115
metacharacter 116
parser 121

INDEX

html.Parse function 121, 125
html/template package 113,115
HTTP
GET request 21, 127, 272, 348
POST request 348
request, cancellation of 253
request multiplexer 193
http example 192, 194, 195
http example package 192
(*http.Client).Do method 253
http.DefaultClient variable 253
http.DefaultServeMux function
195
http.Error function 193
http.Get function 16, 18
http.Handle function 195
http.HandleFunc function 19, 22,
195
http.Handler interface 191, 193
http.HandlerFunc type 194, 203
http.ListenAndServe function 19,
191
http.NewRequest function 253
http.Request type 21,253
(*http.Request).ParseForm
method 22, 348
http.ResponseWriter type 19, 22,
191, 193
http.ServeMux function 193
hypot function 120

identifier _, blank 7, 38, 95, 120, 126,
287
identifier, qualified 41, 43
identity, goroutine 282
IEEE 754 standard 56, 57
if, initialization statement in 22,
206
if-else scope 47
if-else statement 9, 22,47
imag built-in function 61
image manipulation 121
image package 62,287
image/color package 14
image.Decode function 288
image/png package 288
image.RegisterFormat function
288
imaginary literal 61
immutability 261
immutability, string 65, 73
implementation with slice, stack 92,
215
implicit
& 158,167
assignment 38
conversion 79
dereference 159
import declaration 3, 28, 42, 284,

285, 362

import

blank 287

path 284

path domain name 284

renaming 286
incr function 33
increment statement ++ 5, 37, 94
index operation, string 64
indirection operator * 24, 32
infinite loop 6, 120, 228
information hiding 168, 284
init function 44, 49
initialization

lazy 268

package 44

statement in if 22, 206

statement in switch 24
initializer list 30
injection attack, HTML 115
injection attack, SQL 211
in-place slice techniques 91
insertion sort algorithm 101
int type 52
integer

literal 55

overflow 53,113

signed 52, 54

unsigned 52, 54
integration test 314
interface

assignability 175

comparison 184

dynamic type 181

embedding 174

error built-in 196

flag.Value 179, 180

fmt.Stringer 180, 210

http.Handler 191, 193

io.Closer 174

io.Reader 174

io.Writer 15,22,172, 174, 186,

208, 209, 309

JSON 110

method call 182

nil 182

pitfall 184

ReadWriteCloser 174

ReadWriter 174

satisfaction 171, 175

sort.Interface 186

type 171, 174
interface{} type 143, 176, 331
interface

type assertion 208, 210

type, empty 176

value 181

with nil pointer 184

zero value 182

373

interfaces as contracts 171

internal package 298

intset example 166

intsToString function 74

invariants 159, 169, 170, 265, 284,
311, 352

io package 174

io.Closer interface 174

io.Copy function 17, 18

io.Discard stream 22

io.Discard variable 18

io.EOF variable 132

io/ioutil package 16, 145

io.Reader interface 174

iota constant generator xiii, 77

ioutil.ReadAll function 16,272

ioutil.ReadDir function 247

ioutil.ReadFile function 12, 145

io.Writer interface 15,22,172,
174, 186, 208, 209, 309

io.WriteString function 209

“is a” relationship 162, 175

issue, Go 110, 112, 358

issue tracker, GitHub 110

issues example 112

issueshtml example 115

issuesreport example 114

iteration order, map 95

iteration variable, capturing 140

itob function 64

Java programming language xv
JavaScript Object Notation (JSON)
107, 338
JavaScript programming language
xv, 107
jpeg example 287
JSON
interface 110
interface, Open Movie Database
113
interface, xkcd 113
marshaling 108
unmarshaling 110
json.Decoder type 111
json.Encoder type 111
json.Marshal function 108
json.MarshalIndent function 108
json.NewDecoder function 111
json.NewEncoder function 111
json.Unmarshal function 110, 114

keyword, type 212
keywords, table of 27
Knuth, Donald 323

label scope 46
label, statement 46
labeled

374

break statement 249
continue statement 249
statement 46
layout, memory 354, 355
lazy initialization 268
leak, goroutine 233, 236, 246
left shift operator << 54
len built-in function 4, 54, 64, 65,
81, 84, 233
lexical block 46, 120, 135, 141, 212
lexical closure 136
lifetime, variable 35, 46, 135
links example package 138
links.Extract function 138
Lisp programming language 338
Lissajous algorithm 15
Lissajous figure 13
lissajous example 14, 22,35
list, initializer 30
literal
array 82,84
composite 14
function 22, 135, 227
hexadecimal 55
imaginary 61
integer 55
map 94
octal 55
raw string 66
rune 56
slice 38, 86
string 65
struct 15, 102, 106
local
block 46
variable 29, 141
variable, address of 32, 36
variable scope 135
locating packages 291
lock
contention 267, 272
exclusive 263, 266, 270
mutex 102, 263, 264, 324
non-reentrant 265
readers 266
shared 266
writer 266
log package 49, 130, 170
log.Fatalf function 49, 130
lookup m[key], map 94
lookup, ok value from map 96
loop
infinite 6, 120, 228
range 6,9
variable, capturing 141, 236, 240
variable scope 141, 236
while 6

main function 2,310

main, package 2,285, 310
make built-in function 9, 18, 88, 94,
225
make channel 18, 225
make map 9, 18, 94
make slice 88, 322
Mandelbrot figure 63
Mandelbrot set 61
mandelbrot example 62
map
as set 96, 202
comparison 96
element, nonexistent 94, 95
iteration order 95
literal 94
lookup m[key] 94
lookup, ok value from 96
make 9, 18, 94
nil 95
range over 94
type 9,93
with slice key 97
zero value 95
marshaling JSON 108
math package 14, 56
math/big package 63
math/cmplx package 61
math.Hypot function 156
math. Inf function 57
math.IsInf function 57
math.IsNaN function 57
math.NaN function 57
math/rand package 285, 308
memo example 275, 276, 277, 278,
279
memo example package 273
memoization 272
memory allocation 36, 71, 89, 169,
209, 322
memory layout 354, 355
metacharacter, HTML 116
method
(*bufio.Reader).ReadRune 98
(*bufio.Scanner).Err 97
(*bufio.Scanner).Scan 9
(*bufio.Scanner).Split 99
(*bytes.Buffer).Grow 169
(*bytes.Buffer).WriteByte 74
(*bytes.Buffer).WriteRune 74
(*bytes.Buffer).WriteString
74
call, interface 182
chaining 114
declaration 40, 155
error.Error 196
Expr.Check 202
expression 164
Expr.Eval 199
geometry.Point.Distance 156

INDEX

getter 169
(*http.Client).Do 253
(*http.Request).ParseForm 22
348
name 156
net.Conn.Close 220
net.Listener.Accept 220
(*os.File).Write 183
path.Distance 157
promotion 161
receiver name 157
receiver parameter 156
receiver type 157
reflect.Type.Field 348
reflect.value.Addr 342
reflect.Value.CanAddr 342
reflect.value.Interface 331,
342
reflect.value.Kind 332
selector 156
setter 169
String 40, 166, 329
(*sync.Mutex).Lock 21, 146, 263
(*sync.Mutex).Unlock 21, 146,
263
(*sync.Once).Do 270
(*sync.RWMutex) .RLock 266
(*sync.RWMutex) .RUnlock 266
(*sync.WaitGroup).Add 238
(*sync.WaitGroup).Done 238
template.Funcs 114
template.Parse 114
(*testing.T).Errorf 200, 304,
306
(*testing.T).Fatal 306
time.Time.Format 220
value 164
(*xml.Decoder).Token 213
methods example 351
methods of a type, displaying 351
Microsoft Windows file name 72
missing function body 121
m[key], map lookup 94
mobile platforms 121
Modula-2 programming language
xiii
modularity 283
monitor 264, 275
monitor goroutine 261, 277
movie example 108, 110
moving garbage collector 357
multimap 160, 193
multiple-value assignment 37
multiplexer, HTTP request 193
multiplexing, event 244
multiplexing, goroutine 281
multithreading, shared-memory
217,257
multi-valued function 11, 30, 37, 96,

INDEX

125, 126

mustCopy function 221
mutex 145, 163, 256, 269

guarding 263

lock 102, 263, 264, 324

read/write 266, 267
mutual exclusion 262, 267
MySQL database driver 284

name

method 156

method receiver 157

package 28,43

parameter 120

space 41, 156, 283
named

result 120, 126

result zero value 120, 127

type 24, 39, 40, 105, 157
naming convention 28, 169, 174,

289

naming, package 289
NaN (not a number) 57, 93
narrowing conversion 40, 55
negation operator ! 63
net package 219
netcat example 221,223, 227
net.Conn type 220
net.Conn.Close method 220
net.Dial function 220
netflag example 78
net/http package 16, 191
net.Listen function 220
net.Listener type 220

net.Listener.Accept method 220

net/smtp package 312
net/url package 160
networking 121, 219
new built-in function 34
new, redefining 35
nil
channel 246, 249
function 132
interface 182
map 95
pointer 32
pointer, interface with 184
receiver 159, 185
slice 87
non-blocking
cache 275
cache, concurrent 272
channel receive 246
select 246
nonempty example 92
nonexistent map element 94, 95
non-reentrant lock 265
non-standard package 121
number, floating-point 56

number zero value 5, 30
numeric
conversion 79
precision 55, 78
type 51

Oberon programming language xiii
object 156
object-oriented programming
(OOP) 155,168
octal escape 66
octal literal 55
ok value 37
ok value from channel receive 229
ok value from function call 128
ok value from map lookup 96
ok value from type assertion 206
omitempty field tag 109
Open Movie Database JSON
interface 113
operation, atomic 264
operation, conversion 40, 55, 64, 71,
78,79, 173, 187, 194, 208, 231,
353,358
operator
+=, -=, etc., assignment 5
&, address-of 24, 32, 94, 158, 167
&", AND-NOT 53
&*, bit-clear 53
A, bitwise complement 53
|, bitwise OR 166, 167
==, comparison 40, 63
A, exclusive OR 53
* indirection 24, 32
<«, left shift 54
!, negation 63
%, remainder 52, 166
>>, right shift 54
&8, short-circuit AND 63
| |, short-circuit OR 63
+, string concatenation 5, 65
-, unary 53
+, unary 53
associativity 52
precedence 52,63
s[i:j], slice 84, 86
s[i:3], substring 65, 86
operators
assignment 36, 52
comparison 40, 93
table of binary 52
table of bitwise 53
table of comparison 53
optimization 264, 321, 323
optimization, premature 324
OR operator ||, short-circuit 63
order of declarations 48
order, struct field 101, 355
organization, workspace 291

375

OS thread vs. goroutine 280
os package 4,206
o0s.Args variable 4
os.Close function 11
os.Exit function 16, 34, 48
*os.File type 11, 13,172,175, 185,
336
os.FileInfo type 247
(*os.File).Write method 183
os.Getwd function 48
os.IsExist function 207
os.IsNotExist function 207
os.IsPermission function 207
os.LinkError type 207
o0s.0pen function 11
os.PathError type 207
os.Stat function 247
outline example 123,133
// Output comment 326
overflow, integer 53, 113
overflow, stack 124

package declaration 2, 28, 41, 285
package
API 284, 296, 311, 333, 352
back-door 315
bank example 258, 261, 263
block 46
bufio 9
bytes 71,73
bzip example 363
compress/bzip2 361
crypto/sha256 83
database/sql 211, 288
documentation 296
encoding/json 107
encoding/xml 107,213
errors 196
external test 285, 314
flag 33,179
fmt 2
format example 332
geometry example 156
golang.org/x/net/html 122
html/template 113,115
http example 192
image 62,287
image/color 14
image/png 288
initialization 44
internal 298
io 174
io/ioutil 16, 145
links example 138
log 49,130, 170
main 2,285,310
math 14, 56
math/big 63
math/cmplx 61

376

math/rand 285, 308
memo example 273
name 28, 43
naming 289
net 219
net/http 16, 191
net/smtp 312
net/url 160
non-standard 121
os 4,206
params example 348
path 72
path/filepath 72
reflect 330
regexp 149
runtime 151
sort 95,186, 189
storage example 312, 313
strconv 22,71,75
strings 7,71,72,289
sync 237,263
syscall 196, 208
tempconv example 42
testing 285, 302
text/scanner 344
text/tabwriter 188
text/template 113, 300
thumbnail example 235
time 18,77,183
unicode 71
unicode/utf8 69
unsafe 354
package-level declaration 28
packages
building 293
downloading 292
locating 291
querying 298
palindrome 191
palindrome example 303, 305, 308
panic 64, 152, 253
panic built-in function 148, 149
paradoxical race 267
parallel composition 224
parallel, embarrassingly 235
parallelism 217
parameter
. 91,142,143,172
function 119
method receiver 156
name 120
passing 120
unused 120
params example 348
params example package 348
params.Unpack function 349
parentheses 4,6,9,52,63,119, 146,
158, 285, 335, 345
Parse example 152

parser, HTML 121
Pascal programming language xiii
path, ... 292,299
path package 72
path.Distance method 157
path/filepath package 72
Pike, Rob xi, xiii, 67, 107
pipeline example 228,230, 231
pipeline 227
pipeline diagram 228
pitfall, interface 184
pitfall, scope 140
platforms, mobile 121
Playground, Go xvi, 326
playlist example 187
png.Encode function 62
pointer 24, 32, 34

aliasing 33

argument 33, 83

equality 32

hidden 357

nil 32

receiver 158, 167

to struct 100, 103

zero value 32
polling channel 246
polymorphism, ad hoc 211
polymorphism, subtype 211
PopCount function 45
Portable Network Graphics (PNG)

62

POSIX file name 72
POSIX standard xi, 55, 72, 197
precedence, operator 52, 63
precision

floating-point 56, 57, 63, 78

numeric 55,78

of constants 78
predeclared names, table of 28

premature abstraction 216,316,317

premature optimization 324
Printf %% 10

Printf verbs, table of 10
Printf %b 10, 54, 75
Printf %c 10, 56

Printf %d 10, 55

Printf %e 10,57

Printf %f 10, 57

Printf %g 10,57

Printf %[n] 56

Printf %o 10, 55

Printf %q 10, 56, 97
Printf %s 10

Printf %*s 134

Printf %T 10, 80, 83, 184, 331
Printf %t 10, 83

Printf %#v 106, 207
Printf %v 10,11

Printf % x 71

INDEX

Printf %#x 56
Printf %x 10, 55, 83
production code 301
profile

blocking 324

CPU 324

heap 324
profiling 324
programming language

Alef xiii

APL xiii

C++ xiv, xv, 361

C xii, xv, 1, 6, 52, 260, 361

Haskell xiv

Java xv

JavaScript xv, 107

Lisp 338

Modula-2 xiii

Oberon xiii

Pascal xiii

Python xv, 193

Ruby xv, 193

Scheme xiii

Squeak, Newsqueak xiii
promotion, method 161
protocol buffers 107
Python programming language xv,

93

qualified identifier 41, 43
querying packages 298
quote character, ' 56

race
condition 21, 257, 258, 259
detector 271,274
paradoxical 267
randomized testing 307
range loop 6,9
range over channel 229
range over map 94
range over string 69, 88
{{range}} template action 113
raw string literal 66
reachability 36
read, stale 268
readers lock 266
read/write mutex 266, 267
ReadWriteCloser interface 174
ReadWriter interface 174
real built-in function 61
receive
<-ch, channel 18, 225, 232
expression 225
non-blocking channel 246
ok value from channel 229
receive-only channel type <-chan T
230
receiver

INDEX

name, method 157
nil 159, 185
parameter, method 156
pointer 158, 167
type, method 157
recover built-in function 152
recursion 121, 124, 247, 333, 339,
345, 359
recursive
anonymous function 137
data structure 101, 102, 107
type 48
redefining new 35
reference
call by 83
identity 87
type 9,12,93,120
reflect package 330
reflection 329, 352, 359
reflect.StructTag type 348
reflect.Type type 330
reflect.Type.Field method 348
reflect.TypeOf function 330
reflect.Value type 331, 342
reflect.Value zero value 332
reflect.Value.Addr method 342
reflect.Value.CanAddr method
342
reflect.Value.Interface method
331, 342
reflect.Value.Kind method 332
reflect.ValueOf function 331, 337
reflect.Zero function 345
regexp package 149
regexp.Compile function 149
regexp.MustCompile function 149
regular expression 66, 149, 305, 321
relation, “happens before” 226, 257,
261, 277
relationship, “hasa” 162
relationship, “isa” 162, 175
remainder operator % 52, 166
renaming import 286
rendezvous 234
replacement character &, Unicode
70, 98
repository, gopl.io xvi
request
HTTP GET 21, 127, 272, 348
HTTP POST 348
multiplexer, HTTP 193
result list, function 119
result, named 120, 126
return, bare 126
return statement 29, 120, 125
rev example 86
reverb example 223,224
right shift operator >> 54
Ruby programming language xv,

193
rune literal 56
rune type 52, 67
rune slice to string conversion 71
rune to string conversion 71
runtime package 151
runtime API 324
runtime scheduler 281
runtime.Stack function 151

satisfaction, interface 171, 175
Scalable Vector Graphics (SVG) 58
scheduler, runtime 281
Scheme programming language xiii
scope
declaration 45, 137
for 47
if-else 47
label 46
local variable 135
loop variable 141, 236
pitfall 140
short variable declaration 22, 48
switch 47
search algorithm, breadth-first 139,
239
search algorithm, depth-first 136
SearchIssues function 111
select case 245
select, default case in 246
select, non-blocking 246
select statement 244, 245
select{} statement 245
selective recovery 152
selector, field 156
selector, method 156
semaphore, binary 262
semaphore, counting 241
semicolon 3, 6
send ch<-, channel 18,225,232
send statement 225
send-only channel type chan<- T
230
separate compilation 284
sequence diagram, thumbnail 238
sequential consistency 268, 269
serial confinement 262
server example 19, 21
server
chat 253
concurrent clock 219
concurrent echo 222
set, map as 96, 202
setter method 169
sexpr example 340
S-expression
decode example 347
decoding 344
encoding 338

377

sexpr.Marshal function 340
sexpr.readList function 347
sexpr.Unmarshal function 347
SHA256 message digest 83
sha256 example 83
shadowing declaration 46, 49, 206,
212

shared

lock 266

variables 257

variables, concurrency with 257
shared-memory multithreading 217,

257

shift operator <<, left 54
shift operator >>, right 54
short

variable declaration 5, 7, 30, 31

variable declaration scope 22, 48

variable declaration statement 7
short-circuit

AND operator && 63

evaluation 63

OR operator || 63
signature, function 120
signed integer 52, 54
s[i:3], slice operator 84, 86
s[i:J], substring operator 65, 86
simple statement 6, 22
Sizeof table 354
sleep example 179
slice 4

argument 86

capacity 88, 89

capacity growth diagram 90

comparison 87

extendinga 86

key, map with 97

literal 38, 86

make 88, 322

nil 87

of months diagram 84

operator s[i:j] 84, 86

rotation algorithm 86

techniques, in-place 91

type 84

used as stack 123

zero length 87

zero value 74, 87
SMTP client 312
socket

TCP 219

UDP 219

Unix domain 219
sort algorithm, topological 136
sort package 95, 186, 189
sort.Float64s function 191
sort.Interface interface 186
sort.Ints function 191
sort.IntsAreSorted function 191

378

sort.IntSlice type 191
sort.Reverse function 189
sort.Strings function 95, 137, 191
spinner example 218
Sprint function 330
SQL API 211
SQL injection attack 211
sqlQuote function 211,212
squares example 135
Squeak, Newsqueak programming
language xiii
stack
allocation 36
fixed-size 124
growth 124, 280, 358
implementation with slice 92, 215
overflow 124
slice used as 123
trace 149, 253
variable 36
variable-size 124
stale read 268
standard
IEEE 754 56, 57
POSIX xi, 55, 72, 197
Unicode 2,27, 52, 66, 67, 69, 97
statement
--, decrement 5, 37
++, increment 5, 37, 94
assignment 5, 7, 36, 52, 94, 173
break 24, 46
continue 24, 46
coverage 318, 320
defer 144, 150, 264
fallthrough 23,212
for 6
go 18,218
goto 24
if-else 9,22,47
label 46
labeled 46
return 29, 120, 125
select{} 245
select 244,245
send 225
short variable declaration 7
simple 6, 22
switch 23,47
tagless switch 24
type switch 210, 212, 214, 329
unreachable 120
storage example package 312, 313
Strangelove, Dr. 336
strategies, error-handling 128, 152,
310, 316
strconv package 22,71, 75
strconv.Atoi function 22,75
strconv.FormatInt function 75
strconv.Itoa function 75

strconv.ParselInt function 75
strconv.ParseUint function 75
stream, io.Discard 22
String method 40, 166, 329
string

concatenation operator + 5, 65

conversion 71

immutability 65,73

index operation 64

literal 65

literal, raw 66

range over 69, 88

sharing diagram 65

test 71

to byte slice conversion 40, 73

to rune slice conversion 71, 88

zero value 5,7, 30

comparison 65
strings package 7,71, 72, 289
strings.Contains function 69
strings.HasPrefix function 69
strings.HasSuffix function 69
strings.Index function 289
strings.Join function 7,12
strings.Map function 133
strings.NewReader function 289
strings.NewReplacer function 289
strings.Reader type 289
strings.Replacer type 289
strings.Split function 12
strings.TolLower function 72
strings.ToUpper function 72
struct declaration 99
struct

comparison 104

embedding 104, 161

Employee 100

empty 102

field 15,99

field, anonymous 104, 105, 106,

162
field, embedded 161
field, export of 101, 106, 109, 110,
168

field order 101, 355

field tag 109, 348

hole 354

hole diagram 355

literal 15, 102, 106

literal, address of 103

pointer to 100, 103

type 15,24, 99
struct{} type 227, 241,250
struct type, unnamed 163
struct zero value 102
substitutability 193
substring operator s[i:j] 65,86
subtype polymorphism 211
sum example 142

INDEX

surface example 59, 203

surface figure, 3-D 58, 203

SVG 58

SWIG 361

Swiss army knife 290

switch, default case in 23

switch, initialization statement in
24

switch scope 47

switch statement 23, 47

switch statement, tagless 24

switch statement, type 210, 212,
214, 329

switch, context 280

sync package 237,263

synchronous channel 226

sync.Mutex type 263, 269

(*sync.Mutex).Lock method 21,
146, 263

(*sync.Mutex).Unlock method 21,
146, 263

sync.0Once type 270

(*sync.0Once) .Do method 270

sync.RWMutex type 266, 270

(*sync.RWMutex) .RLock method
266

(*sync.RWMutex) .RUnlock method
266

sync.WaitGroup type 237, 250, 274

(*sync.WaitGroup).Add method
238

(*sync.WaitGroup).Done method
238

syscall package 196, 208

syscall.Errno type 196, 197

system call API 196

table of
binary operators 52
bitwise operators 53
comparison operators 53
escape sequences 66
keywords 27
predeclared names 28
Printf verbs 10
UTEF-8 encodings 67
table, Sizeof 354
table-driven testing 200, 306, 319
tag, struct field 109, 348
tagless switch statement 24
tags, build 296
TCP socket 219
techniques, in-place slice 91
tempconv example 39, 180, 289
tempconv example package 42
temperature conversion example 29
tempflag example 181
template API 115
template

INDEX

| in 113

action, {{range}} 113

dot . in 113
template.Funcs method 114
template.HTML type 116
template.Must function 114
template.New function 114
template.Parse method 114
Test function 302
test

black-box 310

brittle 317

character 71

coverage 318

dependency;, cyclic 314

echo 309

failure message 306

integration 314

of word example 303

package, external 285, 314

string 71

white-box 311

assertion 306
_test.go file 285, 302, 303
testing package 285, 302
testing

a command 308

randomized 307

table-driven 200, 306, 319
testing.B type 321
testing.T type 302
(*testing.T).Errorf method 200,

304, 306

(*testing.T).Fatal method 306
tests, writing effective 316, 317
text/scanner package 344
text/tabwriter package 188
text/template package 113, 300
Thompson, Ken xi, 67
thread 218, 280
thread-local storage 282
3-D surface figure 58,203
thumbnail example 236, 237, 238
thumbnail example package 235
thumbnail sequence diagram 238
time package 18,77, 183
time.After function 245
time.AfterFunc function 164
time.Duration type 76, 179
time.Minute constant 76
time.Now function 220
time.Parse function 220
time.Second constant 164
time.Since function 114
time.Tick function 244, 246
time.Time type 114
time.Time.Format method 220
title example 153
title function 144, 145

token-based decoder API 213, 215,
347
token-based XML decoding 213
tool
cgo 361,362
go 2,42,44,290
go doc 25
godoc xvi, 25,297, 326
gofmt 3, 4, 44, 286
goimports 3,44, 286
golint 292
topological sort algorithm 136
topoSort example 136
trace example 146
trace, stack 149, 253
tree, binary 102
treesort example 102
true boolean constant 63
truncation, floating-point 40, 55
tuple assignment 31, 37
type declaration 39
type keyword 212
type
abstract 24,171
aggregate 81, 99
array 81
assertion 205,211
assertion, interface 208, 210
assertion, ok value from 206
bool 63
bufio.Scanner 9
byte 52
bytes.Buffer 74,169, 172, 185
Celsius 39
chan 225
channel 18
<-chan T, receive-only channel
230
chan<- T, send-only channel 230
complex 61
composite xv, 14, 81
composition xv, 107, 162, 189
concrete 24,171,211, 214
displaying methods of a 351
empty interface 176
error built-in 11, 128, 149, 196
Fahrenheit 39
function 119, 120
http.HandlerFunc 194, 203
http.Request 21, 253
http.ResponseWriter 19,22,
191, 193
int 52
interface{} 143,176, 331
interface 171, 174
interface dynamic 181
json.Decoder 111
json.Encoder 111
map 9,93

379

method receiver 157
mismatch 55
named 24, 39, 40, 105, 157
net.Conn 220
net.Listener 220
numeric 51
*os.File 11, 13,172,175, 185,
336
os.FileInfo 247
os.LinkError 207
os.PathError 207
recursive 48
reference 9, 12, 93, 120
reflect.StructTag 348
reflect.Type 330
reflect.value 331, 342
rune 52,67
slice 84
sort.IntSlice 191
strings.Reader 289
strings.Replacer 289
struct{} 227,241,250
struct 15, 24,99
switch, casein 212
switch, default casein 212
switch statement 210, 212, 214,
329

sync.Mutex 263,269
sync.Once 270
sync.RWMutex 266, 270
sync.WaitGroup 237,250, 274
syscall.Errno 196, 197
template.HTML 116
testing.B 321
testing.T 302
time.Duration 76, 179
time.Time 114
uint 52
uintptr 52,354, 357
underlying 39
unidirectional channel 230, 231
unnamed struct 163
unsafe.Pointer 356
url.URL 193

types, untyped constant 78

UDP socket 219
uint type 52
uintptr type 52, 354, 357
unary operator + 53
unary operator - 53
unbuffered channel 226
undefined behavior 260
underlying array 84, 88,91, 187
underlying type 39
Unicode

code point 67

escape 68,107

replacement character ¢ 70, 98

380

standard 2, 27, 52, 66, 67, 69, 97
unicode package 71
unicode.IsDigit function 71
unicode.IsLetter function 71
unicode.IsLower function 71
unicode.IsSpace function 93
unicode.IsUpper function 71
unicode/utf8 package 69
unidirectional channel type 230, 231
union, discriminated 211, 213, 214
universe block 46
Unix domain socket 219
unmarshaling JSON 110
unnamed struct type 163
unnamed variable 34, 88
unreachable statement 120
unsafe package 354
unsafe.AlignOf function 355
unsafe.Offsetof function 355
unsafe.Pointer conversion 356
unsafe.Pointer type 356
unsafe.Pointer zero value 356
unsafe.Sizeof function 354
unsigned integer 52, 54
untyped constant types 78
unused parameter 120
URL 123
URL escape 111
url.QueryEscape function 111
url.URL type 193
urlvalues example 160
UTF-8 66, 67, 98
UTF-8 encodings, table of 67
utf8.DecodeRuneInString function
69

utf8.RuneCountInString function
69

utf8.UTFMax value 98

value
addressable 32
Cdlby 83,120, 158
function 132
interface 181
method 164
utf8.UTFMax 98
var declaration 5, 30
variable
confinement 261
heap 36
http.DefaultClient 253
io.Discard 18
io.EOF 132
lifetime 35, 46, 135
local 29, 141
0s.Args 4
stack 36
unnamed 34, 88
variables, escaping 36

INDEX

variables, shared 257
variable-size stack 124
variadic function 142, 172
vector, bit 165

vendoring 293

visibility 28, 29, 41, 168, 297
visit function 122

wait example 130
WaitForServer function 130
walkDir function 247
web
crawler 119
crawler, concurrent 239
framework 193
while loop 6
white-box test 311
Wilkes, Maurice 301
Wirth, Niklaus xiii
word example 303, 305, 308
word example, test of 303
workspace organization 291
writer lock 266
writing effective tests 316, 317

xkcd JSON interface 113

XML decoding 213

XML (Extensible Markup Language)
107

(*xml.Decoder).Token method
213

xmlselect example 215

zero length slice 87
zero value
array 82
boolean 30
channel 225, 246
function 132
interface 182
map 95
named result 120, 127
number 5, 30
pointer 32
reflect.vValue 332
slice 74, 87
string 5, 7, 30
struct 102
unsafe.Pointer 356

	Contents
	Preface
	The Origins of Go
	The Go Project
	Organization of the Book
	Where to Find More Information
	Acknowledgments

	1. Tutorial
	1.1. Hello, World
	1.2. Command-Line Arguments
	1.3. Finding Duplicate Lines
	1.4. Animated GIFs
	1.5. Fetching a URL
	1.6. Fetching URLs Concurrently
	1.7. A Web Server
	1.8. Loose Ends

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

